Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_3_a5, author = {N. G. Kruzhilin and S. Yu. Orevkov}, title = {Plane algebraic curves in fancy balls}, journal = {Izvestiya. Mathematics }, pages = {407--420}, publisher = {mathdoc}, volume = {85}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a5/} }
N. G. Kruzhilin; S. Yu. Orevkov. Plane algebraic curves in fancy balls. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 407-420. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a5/
[1] M. Boileau, L. Rudolph, “Nœuds non concordants à un $\mathbb{C}$-bord”, Vietnam J. Math., 23 (1995), 13–28
[2] L. Rudolph, “Plane curves in fancy balls”, Enseign. Math. (2), 31:1-2 (1985), 81–84 | MR | Zbl
[3] M. Boileau, S. Orevkov, “Quasi-positivité d'une courbe analytique dans une boule pseudo-convexe”, C. R. Acad. Sci. Paris Sér. I Math., 332:9 (2001), 825–830 | DOI | MR | Zbl
[4] L. Rudolph, “Algebraic functions and closed braids”, Topology, 22:2 (1983), 191–201 | DOI | MR | Zbl
[5] K. Hayden, “Minimal braid representatives of quasipositive links”, Pacific J. Math., 295:2 (2018), 421–427 | DOI | MR | Zbl
[6] P. B. Kronheimer, T. S. Mrowka, “The genus of embedded surfaces in the projective plane”, Math. Res. Lett., 1:6 (1994), 797–808 | DOI | MR | Zbl
[7] S. Yu. Orevkov, “Quasipositive links and connected sums”, Funct. Anal. Appl., 54:1 (2020), 64–67 | DOI | DOI | Zbl
[8] R. Nirenberg, R. O. Wells, “Approximation theorems on differentiable submanifolds of a complex manifold”, Trans. Amer. Math. Soc., 142 (1969), 15–35 | DOI | MR | Zbl
[9] S. Yu. Nemirovski, “Complex analysis and differential topology on complex surfaces”, Russian Math. Surveys, 54:4 (1999), 729–752 | DOI | DOI | MR | Zbl
[10] C. Livingston, A. H. Moore, LinkInfo: table of link invariants, June 17, 2020 http://linkinfo.sitehost.iu.edu
[11] R. Fintushel, R. J. Stern, “Immersed spheres in 4-manifolds and the immersed Thom conjecture”, Turkish J. Math., 19:2 (1995), 145–157 | MR | Zbl
[12] G. Mikhalkin, “Adjunction inequality for real algebraic curves”, Math. Res. Lett., 4:1 (1997), 45–52 | DOI | MR | Zbl
[13] D. Eisenbud, W. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud., 110, Princeton Univ. Press, Princeton, NJ, 1985, vii+173 pp. | MR | Zbl
[14] P. M. Gilmer, S. Yu. Orevkov, “Signatures of real algebraic curves via plumbing diagrams”, J. Knot Theory Ramifications, 27:3 (2018), 1840003, 33 pp. | DOI | MR | Zbl
[15] C. Livingston, A. H. Moore, KnotInfo: table of knots, June 17, 2020 http://www.indiana.edu/~knotinfo
[16] J. Franks, R. F. Williams, “Braids and the Jones polynomial”, Trans. Amer. Math. Soc., 303:1 (1987), 97–108 | DOI | MR | Zbl
[17] H. R. Morton, “Seifert circles and knot polynomials”, Math. Proc. Cambridge Philos. Soc., 99:1 (1986), 107–109 | DOI | MR | Zbl