Plane algebraic curves in fancy balls
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 407-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boileau and Rudolph [1] called an oriented link $L$ in the 3-sphere a \textit{$\mathbb{C}$-boundary} if it can be realized as the intersection of an algebraic curve $A$ in $\mathbb{C}^2$ and the boundary of a smooth embedded closed 4-ball $B$. They showed that some links are not $\mathbb{C}$-boundaries. We say that $L$ is a \textit{strong $\mathbb{C}$-boundary} if $A\setminus B$ is connected. In particular, all quasipositive links are strong $\mathbb{C}$-boundaries. In this paper we give examples of non-quasipositive strong $\mathbb{C}$-boundaries and non-strong $\mathbb{C}$-boundaries. We give a complete classification of (strong) $\mathbb{C}$-boundaries with at most five crossings.
Keywords: quasipositive link, $\mathbb C$-boundary
Mots-clés : Thom conjecture.
@article{IM2_2021_85_3_a5,
     author = {N. G. Kruzhilin and S. Yu. Orevkov},
     title = {Plane algebraic curves in fancy balls},
     journal = {Izvestiya. Mathematics },
     pages = {407--420},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a5/}
}
TY  - JOUR
AU  - N. G. Kruzhilin
AU  - S. Yu. Orevkov
TI  - Plane algebraic curves in fancy balls
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 407
EP  - 420
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a5/
LA  - en
ID  - IM2_2021_85_3_a5
ER  - 
%0 Journal Article
%A N. G. Kruzhilin
%A S. Yu. Orevkov
%T Plane algebraic curves in fancy balls
%J Izvestiya. Mathematics 
%D 2021
%P 407-420
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a5/
%G en
%F IM2_2021_85_3_a5
N. G. Kruzhilin; S. Yu. Orevkov. Plane algebraic curves in fancy balls. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 407-420. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a5/

[1] M. Boileau, L. Rudolph, “Nœuds non concordants à un $\mathbb{C}$-bord”, Vietnam J. Math., 23 (1995), 13–28

[2] L. Rudolph, “Plane curves in fancy balls”, Enseign. Math. (2), 31:1-2 (1985), 81–84 | MR | Zbl

[3] M. Boileau, S. Orevkov, “Quasi-positivité d'une courbe analytique dans une boule pseudo-convexe”, C. R. Acad. Sci. Paris Sér. I Math., 332:9 (2001), 825–830 | DOI | MR | Zbl

[4] L. Rudolph, “Algebraic functions and closed braids”, Topology, 22:2 (1983), 191–201 | DOI | MR | Zbl

[5] K. Hayden, “Minimal braid representatives of quasipositive links”, Pacific J. Math., 295:2 (2018), 421–427 | DOI | MR | Zbl

[6] P. B. Kronheimer, T. S. Mrowka, “The genus of embedded surfaces in the projective plane”, Math. Res. Lett., 1:6 (1994), 797–808 | DOI | MR | Zbl

[7] S. Yu. Orevkov, “Quasipositive links and connected sums”, Funct. Anal. Appl., 54:1 (2020), 64–67 | DOI | DOI | Zbl

[8] R. Nirenberg, R. O. Wells, “Approximation theorems on differentiable submanifolds of a complex manifold”, Trans. Amer. Math. Soc., 142 (1969), 15–35 | DOI | MR | Zbl

[9] S. Yu. Nemirovski, “Complex analysis and differential topology on complex surfaces”, Russian Math. Surveys, 54:4 (1999), 729–752 | DOI | DOI | MR | Zbl

[10] C. Livingston, A. H. Moore, LinkInfo: table of link invariants, June 17, 2020 http://linkinfo.sitehost.iu.edu

[11] R. Fintushel, R. J. Stern, “Immersed spheres in 4-manifolds and the immersed Thom conjecture”, Turkish J. Math., 19:2 (1995), 145–157 | MR | Zbl

[12] G. Mikhalkin, “Adjunction inequality for real algebraic curves”, Math. Res. Lett., 4:1 (1997), 45–52 | DOI | MR | Zbl

[13] D. Eisenbud, W. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud., 110, Princeton Univ. Press, Princeton, NJ, 1985, vii+173 pp. | MR | Zbl

[14] P. M. Gilmer, S. Yu. Orevkov, “Signatures of real algebraic curves via plumbing diagrams”, J. Knot Theory Ramifications, 27:3 (2018), 1840003, 33 pp. | DOI | MR | Zbl

[15] C. Livingston, A. H. Moore, KnotInfo: table of knots, June 17, 2020 http://www.indiana.edu/~knotinfo

[16] J. Franks, R. F. Williams, “Braids and the Jones polynomial”, Trans. Amer. Math. Soc., 303:1 (1987), 97–108 | DOI | MR | Zbl

[17] H. R. Morton, “Seifert circles and knot polynomials”, Math. Proc. Cambridge Philos. Soc., 99:1 (1986), 107–109 | DOI | MR | Zbl