Tau functions of solutions of soliton equations
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 367-387

Voir la notice de l'article provenant de la source Math-Net.Ru

In the holomorphic version of the inverse scattering method, we prove that the determinant of a Toeplitz-type Fredholm operator arising in the solution of the inverse problem is an entire function of the spatial variable for all potentials whose scattering data belong to a Gevrey class strictly less than 1. As a corollary, we establish that, up to a constant factor, every local holomorphic solution of the Korteweg–de Vries equation is the second logarithmic derivative of an entire function of the spatial variable. We discuss the possible order of growth of this entire function. Analogous results are given for all soliton equations of parabolic type.
Keywords: holomorphic solution, analytic continuation.
Mots-clés : soliton equation
@article{IM2_2021_85_3_a3,
     author = {A. V. Domrin},
     title = {Tau functions of  solutions of  soliton equations},
     journal = {Izvestiya. Mathematics },
     pages = {367--387},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a3/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - Tau functions of  solutions of  soliton equations
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 367
EP  - 387
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a3/
LA  - en
ID  - IM2_2021_85_3_a3
ER  - 
%0 Journal Article
%A A. V. Domrin
%T Tau functions of  solutions of  soliton equations
%J Izvestiya. Mathematics 
%D 2021
%P 367-387
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a3/
%G en
%F IM2_2021_85_3_a3
A. V. Domrin. Tau functions of  solutions of  soliton equations. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 367-387. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a3/