Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_3_a3, author = {A. V. Domrin}, title = {Tau functions of solutions of soliton equations}, journal = {Izvestiya. Mathematics }, pages = {367--387}, publisher = {mathdoc}, volume = {85}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a3/} }
A. V. Domrin. Tau functions of solutions of soliton equations. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 367-387. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a3/
[1] A. V. Domrin, “Meromorphic extension of solutions of soliton equations”, Izv. Math., 74:3 (2010), 461–480 | DOI | DOI | MR | Zbl
[2] G. Wilson, “The $\tau$-functions of the $\mathfrak g$AKNS equations”, Integrable systems, The Verdier memorial conference (Luminy, 1991), Progr. Math., 115, Birkhäuser Boston, Boston, MA, 1993, 131–145 | DOI | MR | Zbl
[3] R. Hirota, The direct method in soliton theory, Cambridge Tracts in Math., 155, Cambridge Univ. Press, Cambridge, 2004, xii+200 pp. | DOI | MR | Zbl
[4] M. Kashiwara, T. Miwa, “The $\tau$ function of the Kadomtsev–Petviashvili equation. Transformation groups for soliton equations. I”, Proc. Japan Acad. Ser. A Math. Sci., 57:7 (1981), 342–347 | DOI | MR | Zbl
[5] M. Sato, “Soliton equations as dynamical systems on infinite-dimensional Grassmann manifolds”, Random systems and dynamical systems (Kyoto Univ., Kyoto, 1981), RIMS Kokyuroku, 439, Kyoto Univ., Research Institute for Mathematical Sciences, Kyoto, 1981, 30–46 | MR | Zbl
[6] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 61 (1985), 5–65 | DOI | MR | Zbl
[7] J. Dorfmeister, “Weighted $\ell_1$-Grassmannians and Banach manifolds of solutions of the KP-equation and the KdV-equation”, Math. Nachr., 180 (1996), 43–73 | DOI | MR | Zbl
[8] M. J. Dupré, J. F. Glazebrook, E. Previato, “Differential algebras with Banach-algebra coefficients. II: The operator cross-ratio tau-function and the Schwarzian derivative”, Complex Anal. Oper. Theory, 7:6 (2013), 1713–1734 | DOI | MR | Zbl
[9] M. Cafasso, Chao-Zhong Wu, “Tau functions and the limit of block Toeplitz determinants”, Int. Math. Res. Not. IMRN, 2015:20 (2015), 10339–10366 | DOI | MR | Zbl
[10] Chuu-Lian Terng, K. Uhlenbeck, “Tau functions and Virasoro actions for soliton hierarchies”, Comm. Math. Phys., 342:1 (2016), 117–150 | DOI | MR | Zbl
[11] A. C. Newell, Solitons in mathematics and physics, CBMS-NSF Regional Conf. Ser. in Appl. Math., 48, SIAM, Philadelphia, PA, 1985, xvi+244 pp. | DOI | MR | MR | Zbl | Zbl
[12] R. Carroll, “On the determinant theme for tau functions, Grassmannians, and inverse scattering”, Inverse scattering and applications (Univ. of Massachusetts, Amherst, MA, 1990), Contemp. Math., 122, Amer. Math. Soc., Providence, RI, 1991, 23–28 | DOI | MR | Zbl
[13] P. D. Lax, Functional analysis, Pure Appl. Math. (N. Y.), Wiley-Interscience [John Wiley Sons], New York, 2002, xx+580 pp. | MR | Zbl
[14] A. Pietsch, History of Banach spaces and linear operators, Birkhäuser Boston, Inc., Boston, MA, 2007, xxiv+855 pp. | DOI | MR | Zbl
[15] I. Gohberg, S. Coldberg, N. Krupnik, Traces and determinants of linear operators, Oper. Theory Adv. Appl., 116, Birkhäuser Verlag, Basel, 2000, x+258 pp. | DOI | MR | Zbl
[16] E. T. Whittaker, G. N. Watson, A course of modern analysis, 4th ed., Cambridge Univ. Press, Cambridge, 1927, vii+608 pp. | DOI | MR | Zbl | Zbl
[17] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966, xix+592 pp. | DOI | MR | MR | Zbl | Zbl
[18] A. F. Leontev, Tselye funktsii. Ryady eksponent, Nauka, M., 1983, 176 pp. | MR | Zbl
[19] H. Widom, “On the limit of block Toeplitz determinants”, Proc. Amer. Math. Soc., 50 (1975), 167–173 | DOI | MR | Zbl
[20] B. Malgrange, “Déformations isomonodromiques, forme de Liouville, fonction $\tau$”, Ann. Inst. Fourier (Grenoble), 54:5 (2004), 1371–1392 | DOI | MR | Zbl
[21] A. V. Domrin, “Remarks on the local version of the inverse scattering method”, Proc. Steklov Inst. Math., 253 (2006), 37–50 | DOI | MR | Zbl
[22] A. V. Komlov, “On the poles of Picard potentials”, Trans. Moscow Math. Soc., 2010, 241–250 | DOI | MR | Zbl
[23] J. J. Duistermaat, F. A. Grünbaum, “Differential equations in the spectral parameter”, Comm. Math. Phys., 103:2 (1986), 177–240 | DOI | MR | Zbl
[24] L. D. Faddeev, L. A. Takhtajan, Hamiltonian methods in the theory of solitons, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1987, ix+592 pp. | DOI | MR | MR | Zbl | Zbl