Tau functions of solutions of soliton equations
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 367-387.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the holomorphic version of the inverse scattering method, we prove that the determinant of a Toeplitz-type Fredholm operator arising in the solution of the inverse problem is an entire function of the spatial variable for all potentials whose scattering data belong to a Gevrey class strictly less than 1. As a corollary, we establish that, up to a constant factor, every local holomorphic solution of the Korteweg–de Vries equation is the second logarithmic derivative of an entire function of the spatial variable. We discuss the possible order of growth of this entire function. Analogous results are given for all soliton equations of parabolic type.
Keywords: holomorphic solution, analytic continuation.
Mots-clés : soliton equation
@article{IM2_2021_85_3_a3,
     author = {A. V. Domrin},
     title = {Tau functions of  solutions of  soliton equations},
     journal = {Izvestiya. Mathematics },
     pages = {367--387},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a3/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - Tau functions of  solutions of  soliton equations
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 367
EP  - 387
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a3/
LA  - en
ID  - IM2_2021_85_3_a3
ER  - 
%0 Journal Article
%A A. V. Domrin
%T Tau functions of  solutions of  soliton equations
%J Izvestiya. Mathematics 
%D 2021
%P 367-387
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a3/
%G en
%F IM2_2021_85_3_a3
A. V. Domrin. Tau functions of  solutions of  soliton equations. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 367-387. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a3/

[1] A. V. Domrin, “Meromorphic extension of solutions of soliton equations”, Izv. Math., 74:3 (2010), 461–480 | DOI | DOI | MR | Zbl

[2] G. Wilson, “The $\tau$-functions of the $\mathfrak g$AKNS equations”, Integrable systems, The Verdier memorial conference (Luminy, 1991), Progr. Math., 115, Birkhäuser Boston, Boston, MA, 1993, 131–145 | DOI | MR | Zbl

[3] R. Hirota, The direct method in soliton theory, Cambridge Tracts in Math., 155, Cambridge Univ. Press, Cambridge, 2004, xii+200 pp. | DOI | MR | Zbl

[4] M. Kashiwara, T. Miwa, “The $\tau$ function of the Kadomtsev–Petviashvili equation. Transformation groups for soliton equations. I”, Proc. Japan Acad. Ser. A Math. Sci., 57:7 (1981), 342–347 | DOI | MR | Zbl

[5] M. Sato, “Soliton equations as dynamical systems on infinite-dimensional Grassmann manifolds”, Random systems and dynamical systems (Kyoto Univ., Kyoto, 1981), RIMS Kokyuroku, 439, Kyoto Univ., Research Institute for Mathematical Sciences, Kyoto, 1981, 30–46 | MR | Zbl

[6] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 61 (1985), 5–65 | DOI | MR | Zbl

[7] J. Dorfmeister, “Weighted $\ell_1$-Grassmannians and Banach manifolds of solutions of the KP-equation and the KdV-equation”, Math. Nachr., 180 (1996), 43–73 | DOI | MR | Zbl

[8] M. J. Dupré, J. F. Glazebrook, E. Previato, “Differential algebras with Banach-algebra coefficients. II: The operator cross-ratio tau-function and the Schwarzian derivative”, Complex Anal. Oper. Theory, 7:6 (2013), 1713–1734 | DOI | MR | Zbl

[9] M. Cafasso, Chao-Zhong Wu, “Tau functions and the limit of block Toeplitz determinants”, Int. Math. Res. Not. IMRN, 2015:20 (2015), 10339–10366 | DOI | MR | Zbl

[10] Chuu-Lian Terng, K. Uhlenbeck, “Tau functions and Virasoro actions for soliton hierarchies”, Comm. Math. Phys., 342:1 (2016), 117–150 | DOI | MR | Zbl

[11] A. C. Newell, Solitons in mathematics and physics, CBMS-NSF Regional Conf. Ser. in Appl. Math., 48, SIAM, Philadelphia, PA, 1985, xvi+244 pp. | DOI | MR | MR | Zbl | Zbl

[12] R. Carroll, “On the determinant theme for tau functions, Grassmannians, and inverse scattering”, Inverse scattering and applications (Univ. of Massachusetts, Amherst, MA, 1990), Contemp. Math., 122, Amer. Math. Soc., Providence, RI, 1991, 23–28 | DOI | MR | Zbl

[13] P. D. Lax, Functional analysis, Pure Appl. Math. (N. Y.), Wiley-Interscience [John Wiley Sons], New York, 2002, xx+580 pp. | MR | Zbl

[14] A. Pietsch, History of Banach spaces and linear operators, Birkhäuser Boston, Inc., Boston, MA, 2007, xxiv+855 pp. | DOI | MR | Zbl

[15] I. Gohberg, S. Coldberg, N. Krupnik, Traces and determinants of linear operators, Oper. Theory Adv. Appl., 116, Birkhäuser Verlag, Basel, 2000, x+258 pp. | DOI | MR | Zbl

[16] E. T. Whittaker, G. N. Watson, A course of modern analysis, 4th ed., Cambridge Univ. Press, Cambridge, 1927, vii+608 pp. | DOI | MR | Zbl | Zbl

[17] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966, xix+592 pp. | DOI | MR | MR | Zbl | Zbl

[18] A. F. Leontev, Tselye funktsii. Ryady eksponent, Nauka, M., 1983, 176 pp. | MR | Zbl

[19] H. Widom, “On the limit of block Toeplitz determinants”, Proc. Amer. Math. Soc., 50 (1975), 167–173 | DOI | MR | Zbl

[20] B. Malgrange, “Déformations isomonodromiques, forme de Liouville, fonction $\tau$”, Ann. Inst. Fourier (Grenoble), 54:5 (2004), 1371–1392 | DOI | MR | Zbl

[21] A. V. Domrin, “Remarks on the local version of the inverse scattering method”, Proc. Steklov Inst. Math., 253 (2006), 37–50 | DOI | MR | Zbl

[22] A. V. Komlov, “On the poles of Picard potentials”, Trans. Moscow Math. Soc., 2010, 241–250 | DOI | MR | Zbl

[23] J. J. Duistermaat, F. A. Grünbaum, “Differential equations in the spectral parameter”, Comm. Math. Phys., 103:2 (1986), 177–240 | DOI | MR | Zbl

[24] L. D. Faddeev, L. A. Takhtajan, Hamiltonian methods in the theory of solitons, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1987, ix+592 pp. | DOI | MR | MR | Zbl | Zbl