On compact subsets possessing strictly plurisubharmonic functions
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 605-618.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a geometric condition on a compact subset of a complex manifold which is necessary and sufficient for the existence of a smooth strictly plurisubharmonic function defined in a neighbourhood of this set.
Keywords: strictly plurisubharmonic functions, $1$-pseudoconcave sets.
@article{IM2_2021_85_3_a17,
     author = {N. V. Shcherbina},
     title = {On compact subsets possessing strictly plurisubharmonic functions},
     journal = {Izvestiya. Mathematics },
     pages = {605--618},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a17/}
}
TY  - JOUR
AU  - N. V. Shcherbina
TI  - On compact subsets possessing strictly plurisubharmonic functions
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 605
EP  - 618
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a17/
LA  - en
ID  - IM2_2021_85_3_a17
ER  - 
%0 Journal Article
%A N. V. Shcherbina
%T On compact subsets possessing strictly plurisubharmonic functions
%J Izvestiya. Mathematics 
%D 2021
%P 605-618
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a17/
%G en
%F IM2_2021_85_3_a17
N. V. Shcherbina. On compact subsets possessing strictly plurisubharmonic functions. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 605-618. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a17/

[1] H. Grauert, “On Levi's problem and the imbedding of real-analytic manifolds”, Ann. of Math. (2), 68:2 (1958), 460–472 | DOI | MR | Zbl

[2] R. Narasimhan, “The Levi problem for complex spaces”, Math. Ann., 142:4 (1961), 355–365 | DOI | MR | Zbl

[3] R. Narasimhan, “The Levi problem for complex spaces. II”, Math. Ann., 146:3 (1962), 195–216 | DOI | MR | Zbl

[4] N. Sibony, “A class of hyperbolic manifolds”, Recent developments in several complex variables (Princeton Univ., Princeton, NJ, 1979), Ann. of Math. Stud., 100, Princeton Univ. Press, Princeton, NJ, 1981, 357–372 | MR | Zbl

[5] Bo-Yong Chen, Jin-Hao Zhang, “The Bergman metric on a Stein manifold with a bounded plurisubharmonic function”, Trans. Amer. Math. Soc., 354:8 (2002), 2997–3009 | DOI | MR | Zbl

[6] E. A. Poletsky, “Pluricomplex Green functions on manifolds”, J. Geom. Anal., 30:2 (2020), 1396–1410 | DOI | MR | Zbl

[7] W. Rothstein, “Zur Theorie der analytischen Mannigfaltigkeiten im Räume von $n$ komplexen Veränderlichen”, Math. Ann., 129 (1955), 96–138 | DOI | MR | Zbl

[8] T. Harz, N. Shcherbina, G. Tomassini, “On defining functions and cores for unbounded domains. I”, Math. Z., 286:3-4 (2017), 987–1002 | DOI | MR | Zbl

[9] N. Sibony, “Levi problem in complex manifolds”, Math. Ann., 371:3-4 (2018), 1047–1067 | DOI | MR | Zbl

[10] D. Sullivan, “Cycles for the dynamical study of foliated manifolds and complex manifolds”, Invent. Math., 36:1 (1976), 225–255 | DOI | MR | Zbl

[11] R. Harvey, H. B. Lawson, Jr., “An intrinsic characterization of Kähler manifolds”, Invent. Math., 74:2 (1983), 169–198 | DOI | MR | Zbl

[12] J. E. Fornæss, N. Sibony, “Oka's inequality for currents and applications”, Math. Ann., 301:3 (1995), 399–419 | DOI | MR | Zbl

[13] Z. Slodkowski, “Local maximum property and $q$-plurisubharmonic functions in uniform algebras”, J. Math. Anal. Appl., 115:1 (1986), 105–130 | DOI | MR | Zbl

[14] T. Harz, N. Shcherbina, G. Tomassini, On defining functions and cores for unbounded domains, arXiv: 1405.2250v3

[15] T. Harz, N. Shcherbina, G. Tomassini, “On defining functions and cores for unbounded domains. II”, J. Geom. Anal., 30:3 (2020), 2293–2325 | DOI | MR | Zbl

[16] T. Harz, N. Shcherbina, G. Tomassini, “On defining functions and cores for unbounded domains. III”, Sb. Math.

[17] E. A. Poletsky, N. Shcherbina, “Plurisubharmonically separable complex manifolds”, Proc. Amer. Math. Soc., 147:6 (2019), 2413–2424 | DOI | MR | Zbl

[18] Z. Slodkowski, “Pseudoconcave decompositions in complex manifolds”, Advances in complex geometry, Contemp. Math., 735, Amer. Math. Soc., Providence, RI, 2019, 239–259 | DOI | MR | Zbl

[19] T. Harz, N. Shcherbina, G. Tomassini, “Wermer type sets and extension of CR functions”, Indiana Univ. Math. J., 61:1 (2012), 431–459 | DOI | MR | Zbl

[20] E. M. Chirka, “Approximation by polynomials on star-shaped subsets of ${\mathbf C}^n$”, Math. Notes, 14:1 (1973), 586–588 | DOI | MR | Zbl

[21] N. Shcherbina, “On the polynomial hull of a graph”, Indiana Univ. Math. J., 42:2 (1993), 477–503 | DOI | MR | Zbl

[22] E. M. Chirka, “Levi and Trépreau theorems for continuous graphs”, Proc. Steklov Inst. Math., 235, 2001, 261–276 | MR | Zbl

[23] H. Rossi, “Holomorphically convex sets in several complex variables”, Ann. of Math. (2), 74:3 (1961), 470–493 | DOI | MR | Zbl