On compact subsets possessing strictly plurisubharmonic functions
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 605-618

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a geometric condition on a compact subset of a complex manifold which is necessary and sufficient for the existence of a smooth strictly plurisubharmonic function defined in a neighbourhood of this set.
Keywords: strictly plurisubharmonic functions, $1$-pseudoconcave sets.
@article{IM2_2021_85_3_a17,
     author = {N. V. Shcherbina},
     title = {On compact subsets possessing strictly plurisubharmonic functions},
     journal = {Izvestiya. Mathematics },
     pages = {605--618},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a17/}
}
TY  - JOUR
AU  - N. V. Shcherbina
TI  - On compact subsets possessing strictly plurisubharmonic functions
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 605
EP  - 618
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a17/
LA  - en
ID  - IM2_2021_85_3_a17
ER  - 
%0 Journal Article
%A N. V. Shcherbina
%T On compact subsets possessing strictly plurisubharmonic functions
%J Izvestiya. Mathematics 
%D 2021
%P 605-618
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a17/
%G en
%F IM2_2021_85_3_a17
N. V. Shcherbina. On compact subsets possessing strictly plurisubharmonic functions. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 605-618. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a17/