Nevanlinna factorization in weighted classes of analytic functions of~variable smoothness
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 582-604.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a new class of functions of variable smoothness that are analytic in the unit disc and continuous in the closed disc. We construct the theory of the Nevanlinna outer-inner factorization, taking into account the influence of the inner factor on the outer function, for functions of the new class.
Keywords: outer-inner factorization, Muckenhoupt condition.
Mots-clés : Lebesgue spaces with variable exponent
@article{IM2_2021_85_3_a16,
     author = {N. A. Shirokov},
     title = {Nevanlinna factorization in weighted classes of  analytic functions of~variable smoothness},
     journal = {Izvestiya. Mathematics },
     pages = {582--604},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a16/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Nevanlinna factorization in weighted classes of  analytic functions of~variable smoothness
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 582
EP  - 604
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a16/
LA  - en
ID  - IM2_2021_85_3_a16
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Nevanlinna factorization in weighted classes of  analytic functions of~variable smoothness
%J Izvestiya. Mathematics 
%D 2021
%P 582-604
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a16/
%G en
%F IM2_2021_85_3_a16
N. A. Shirokov. Nevanlinna factorization in weighted classes of  analytic functions of~variable smoothness. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 582-604. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a16/

[1] W. Rudin, “The closed ideals in an algebra of analytic functions”, Canad. J. Math., 9:3 (1957), 426–434 | DOI | MR | Zbl

[2] L. Carleson, “A representation formula for the Dirichlet integral”, Math. Z., 73:2 (1960), 190–196 | DOI | MR | Zbl

[3] V. P. Khavin, F. A. Shamoyan, “Analytic functions whose boundary values have Lipschitz modulus”, Semin. Math., 19, V. A. Steklov Math. Inst., Leningrad, 1972, 137–138 | MR | Zbl

[4] J. E. Brennan, “Approximation in the mean by polynomials on non-Caratheodory domains”, Ark. Mat., 15:1 (1977), 117–168 | DOI | MR | Zbl

[5] N. A. Shirokov, Analytic functions smooth up to the boundary, Lecture Notes in Math., 1312, Springer-Verlag, Berlin, 1988, iv+213 pp. | DOI | MR | Zbl

[6] N. A. Shirokov, “Inner functions in the analytic Besov classes”, St. Petersburg Math. J., 8:4 (1997), 675–694 | MR | Zbl

[7] N. A. Shirokov, “Outer functions from the analytic O. V. Besov classes”, J. Math. Sci. (N.Y.), 85:2 (1997), 1867–1897 | DOI | MR | Zbl

[8] N. A. Shirokov, “Vnutrennie mnozhiteli analiticheskikh funktsii peremennoi gladkosti v zamknutom kruge”, Algebra i analiz, 32:5 (2020), 145–181 | MR

[9] N. A. Shirokov, “Outer functions in classes of analytic functions of variable smoothness”, J. Math. Sci. (N.Y.), 251:2 (2020), 296–300 | DOI | MR | Zbl

[10] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993, xiv+695 pp. | MR | Zbl

[11] P. M. Tamrazov, “Contour and solid structure properties of holomorphic functions of a complex variable”, Russian Math. Surveys, 28:1 (1973), 141–173 | DOI | MR | Zbl

[12] V. P. Khavin, “Factorization of analytic functions smooth to the boundary”, J. Soviet Math., 2 (1974), 228–231 | DOI | MR | Zbl

[13] K. M. Dyakonov, “Smooth functions and co-invariant subspaces of the shift operator”, St. Petersburg Math. J., 4:5 (1993), 933–959 | MR | Zbl

[14] K. M. Dyakonov, “Blaschke products and nonideal ideals in higher order Lipschitz algebras”, Algebra i analiz, 21:6 (2009), 182–201 ; St. Petersburg Math. J., 21:6 (2010), 979–993 | MR | Zbl | DOI

[15] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces. Foundations and harmonic analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Heidelberg, 2013, x+312 pp. | DOI | MR | Zbl

[16] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, “The generalized Muckenhoupt condition”, Lebesgue and Sobolev spaces with variable exponents, Ch. 5, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011, 143–197 | DOI | MR | Zbl

[17] D. V. Rutsky, “$A_1$-regularity and boundedness of Calderón–Zygmund operators”, Studia Math., 221:3 (2014), 231–247 | DOI | MR | Zbl

[18] E. M. Dyn'kin, “Constructive characterization of the Sobolev and Besov classes”, Proc. Steklov Inst. Math., 155 (1983), 39–74 | MR | Zbl

[19] F. A. Shamoyan, “Division by an inner function in certain spaces of functions analytic in a disk”, J. Soviet Math., 2 (1974), 232–234 | DOI | MR | Zbl