Immersions of open Riemann~surfaces into~the~Riemann sphere
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 562-581

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we show that the space of holomorphic immersions from any given open Riemann surface $M$ into the Riemann sphere $\mathbb{CP}^1$ is weakly homotopy equivalent to the space of continuous maps from $M$ to the complement of the zero section in the tangent bundle of $\mathbb{CP}^1$. It follows in particular that this space has $2^k$ path components, where $k$ is the number of generators of the first homology group $H_1(M,\mathbb{Z})=\mathbb{Z}^k$. We also prove a parametric version of the Mergelyan approximation theorem for maps from Riemann surfaces to an arbitrary complex manifold, a result used in the proof of our main theorem.
Keywords: Riemann surface, holomorphic immersion, meromorphic function, $\mathrm{h}$-principle, weak homotopy equivalence.
@article{IM2_2021_85_3_a15,
     author = {F. Forstneri\v{c}},
     title = {Immersions of  open {Riemann~surfaces} {into~the~Riemann} sphere},
     journal = {Izvestiya. Mathematics },
     pages = {562--581},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a15/}
}
TY  - JOUR
AU  - F. Forstnerič
TI  - Immersions of  open Riemann~surfaces into~the~Riemann sphere
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 562
EP  - 581
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a15/
LA  - en
ID  - IM2_2021_85_3_a15
ER  - 
%0 Journal Article
%A F. Forstnerič
%T Immersions of  open Riemann~surfaces into~the~Riemann sphere
%J Izvestiya. Mathematics 
%D 2021
%P 562-581
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a15/
%G en
%F IM2_2021_85_3_a15
F. Forstnerič. Immersions of  open Riemann~surfaces into~the~Riemann sphere. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 562-581. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a15/