Approximation in measure: the Dirichlet problem, universality and~the~Riemann hypothesis
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 547-561

Voir la notice de l'article provenant de la source Math-Net.Ru

We use approximation in measure to solve an asymptotic Dirichlet problem on arbitrary open sets and to show that many functions, including the Riemann zeta-function, are universal in measure. Connections with the Riemann hypothesis are suggested.
Keywords: harmonic approximation in measure, harmonic, holomorphic, Dirichlet problem, Riemann zeta-function, universality.
@article{IM2_2021_85_3_a14,
     author = {J. Falc\'o and P. M. Gauthier},
     title = {Approximation in measure: the {Dirichlet} problem, universality {and~the~Riemann} hypothesis},
     journal = {Izvestiya. Mathematics },
     pages = {547--561},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a14/}
}
TY  - JOUR
AU  - J. Falcó
AU  - P. M. Gauthier
TI  - Approximation in measure: the Dirichlet problem, universality and~the~Riemann hypothesis
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 547
EP  - 561
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a14/
LA  - en
ID  - IM2_2021_85_3_a14
ER  - 
%0 Journal Article
%A J. Falcó
%A P. M. Gauthier
%T Approximation in measure: the Dirichlet problem, universality and~the~Riemann hypothesis
%J Izvestiya. Mathematics 
%D 2021
%P 547-561
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a14/
%G en
%F IM2_2021_85_3_a14
J. Falcó; P. M. Gauthier. Approximation in measure: the Dirichlet problem, universality and~the~Riemann hypothesis. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 547-561. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a14/