Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_3_a11, author = {D. Sykes and G. Schmalz and V. V. Ezhov}, title = {On the classification of $3$-dimensional spherical {Sasakian} manifolds}, journal = {Izvestiya. Mathematics }, pages = {518--528}, publisher = {mathdoc}, volume = {85}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a11/} }
TY - JOUR AU - D. Sykes AU - G. Schmalz AU - V. V. Ezhov TI - On the classification of $3$-dimensional spherical Sasakian manifolds JO - Izvestiya. Mathematics PY - 2021 SP - 518 EP - 528 VL - 85 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a11/ LA - en ID - IM2_2021_85_3_a11 ER -
D. Sykes; G. Schmalz; V. V. Ezhov. On the classification of $3$-dimensional spherical Sasakian manifolds. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 518-528. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a11/
[1] V. Ezhov, G. Schmalz, “Explicit description of spherical rigid hypersurfaces in $\mathbb{C}^2$”, Complex Anal. Synerg., 1:1 (2015), 2, 10 pp. | DOI | MR | Zbl
[2] N. K. Stanton, “A normal form for rigid hypersurfaces in $\mathbf{C}^2$”, Amer. J. Math., 113:5 (1991), 877–910 | DOI | MR | Zbl
[3] A. Isaev, J. Merker, “On the real-analyticity of rigid spherical hypersurfaces in $\mathbb{C}^2$”, Proc. Amer. Math. Soc., 147:12 (2019), 5251–5256 | DOI | MR | Zbl
[4] M. S. Baouendi, P. Ebenfelt, L. P. Rothschild, Real submanifolds in complex space and their mappings, Princeton Math. Ser., 47, Princeton Univ. Press, Princeton, NJ, 1999, xii+404 pp. | DOI | MR | Zbl