Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_3_a10, author = {S. I. Pinchuk}, title = {Quasi-polynomial mappings with constant {Jacobian}}, journal = {Izvestiya. Mathematics }, pages = {506--517}, publisher = {mathdoc}, volume = {85}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a10/} }
S. I. Pinchuk. Quasi-polynomial mappings with constant Jacobian. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 506-517. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a10/
[1] S. S. Abhyankar, Lectures on expansion techniques in algebraic geometry, Tata Inst. Fund. Res. Lectures on Math. and Phys., 57, Tata Inst. Fund. Res., Bombay, 1977, iv+168 pp. | MR | Zbl
[2] H. Bass, E. H. Connel, D. Wright, “The Jacobian conjecture: reduction of degree and formal expansion of the inverse”, Bull. Amer. Math. Soc. (N.S.), 7:2 (1982), 287–330 | DOI | MR | Zbl
[3] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progr. Math., 190, Birkhäuser Verlag, Basel, 2000, xviii+329 pp. | DOI | MR | Zbl
[4] E. Formanek, “Theorems of W. W. Stothers and the Jacobian conjecture in two variables”, Proc. Amer. Math. Soc., 139:4 (2011), 1137–1140 | DOI | MR | Zbl
[5] C. Valqui, J. A. Guccione, J. J. Guccione, “On the shape of possible counterexamples to the Jacobian conjecture”, J. Algebra, 471 (2017), 13–74 | DOI | MR | Zbl
[6] L. Makar-Limanov, On the Newton polygon of a Jacobian mate, MPIM Preprint Series, No. 2013-53, Max-Planck-Institut für Mathematik, Bonn, 2013, 14 pp. http://www.mpim-bonn.mpg.de/node/263
[7] L. Makar-Limanov, On the Newton polytope of a Jacobian pair, MPIM Preprint Series, No. 2014-30, Max-Planck-Institut für Mathematik, Bonn, 2014, 20 pp. http://www.mpim-bonn.mpg.de/node/263
[8] T. T. Moh, “On the Jacobian conjecture and the configurations of roots”, J. Reine Angew. Math., 1983:340 (1983), 140–212 | DOI | MR | Zbl
[9] J. Dixmier, “Sur les algèbres de Weyl”, Bull. Soc. Math. France, 96 (1968), 209–242 | DOI | MR | Zbl
[10] A. Joseph, “The Weyl algebra – semisimple and nilpotent elements”, Amer. J. Math., 97:3 (1975), 597–615 | DOI | MR | Zbl
[11] B. J. Birch, S. Chowla, M. Hall, Jr., A. Schinzel, “On the difference $x^3-y^2$”, Norske Vid. Selsk. Forh. (Trondheim), 38 (1965), 65–69 | MR | Zbl
[12] H. Davenport, “On $f^3(t)-g^2(t)$”, Norske Vid. Selsk. Forh. (Trondheim), 38 (1965), 86–87 | MR | Zbl
[13] W. W. Stothers, “Polynomial identities and Hauptmoduln”, Quart. J. Math. Oxford Ser. (2), 32:127 (1981), 349–370 | DOI | MR | Zbl
[14] U. Zannier, “On Davenport's bound for the degree of $f^3-g^2$ and Riemann's existence theorem”, Acta Arith., 71:2 (1995), 107–137 | DOI | MR | Zbl
[15] F. Pakovich, A. K. Zvonkin, “Minimum degree of the difference of two polynomials over $\mathbb Q$, and weighted plane trees”, Selecta Math. (N.S.), 20:4 (2014), 1003–1065 | DOI | MR | Zbl