Properties of monotone path-connected sets
Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 306-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study monotone path-connected sets and also strongly and weakly Menger-connected sets. We introduce the notion of $\varepsilon$-solarity and establish a connection with the notion of solarity. We prove that boundedly compact suns in $C(Q)$ are monotone path-connected.
Keywords: spans, monotone path-connected sets, Menger connectedness, solarity.
@article{IM2_2021_85_2_a5,
     author = {I. G. Tsar'kov},
     title = {Properties of monotone path-connected sets},
     journal = {Izvestiya. Mathematics },
     pages = {306--331},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a5/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Properties of monotone path-connected sets
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 306
EP  - 331
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a5/
LA  - en
ID  - IM2_2021_85_2_a5
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Properties of monotone path-connected sets
%J Izvestiya. Mathematics 
%D 2021
%P 306-331
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a5/
%G en
%F IM2_2021_85_2_a5
I. G. Tsar'kov. Properties of monotone path-connected sets. Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 306-331. http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a5/

[1] I. G. Tsar'kov, “Local and global continuous $\varepsilon$-selection”, Izv. Math., 80:2 (2016), 442–461 | DOI | DOI | MR | Zbl

[2] A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | DOI | MR | Zbl

[3] A. R. Alimov, I. G. Tsar'kov, “Chebyshev centres, Jung constants, and their applications”, Russian Math. Surveys, 74:5 (2019), 775–849 | DOI | DOI | MR | Zbl

[4] A. R. Alimov, V. Yu. Protasov, “Separation of convex sets by extreme hyperplanes”, J. Math. Sci. (N.Y.), 191:5 (2013), 599–604 | DOI | MR | Zbl

[5] A. R. Alimov, “On finite-dimensional Banach spaces in which suns are connected”, Eurasian Math. J., 6:4 (2015), 7–18 | MR | Zbl

[6] I. G. Tsar'kov, “Continuous $\varepsilon$-selection”, Sb. Math., 207:2 (2016), 267–285 | DOI | DOI | MR | Zbl

[7] L. Górniewicz, Topological fixed point theory of multivalued mappings, Topol. Fixed Point Theory Appl., 4, 2nd ed., Springer, Dordrecht, 2006, xiv+539 pp. | DOI | MR | Zbl

[8] I. G. Tsar'kov, “Continuous selections for metric projection operators and for their generalizations”, Izv. Math., 82:4 (2018), 837–859 | DOI | DOI | MR | Zbl

[9] K. Sakai, Geometric aspects of general topology, Springer Monogr. Math., Springer, Tokyo, 2013, xvi+521 pp. | DOI | MR | Zbl

[10] I. G. Tsar'kov, “Approximative properties of sets and continuous selections”, Sb. Math., 211:8 (2020), 1190–1211 | DOI | DOI | MR | Zbl

[11] V. A. Koshcheev, “The connectivity and approximative properties of sets in linear normed spaces”, Math. Notes, 17:2 (1975), 114–119 | DOI | MR | Zbl

[12] V. S. Balaganskii, L. P. Vlasov, “The problem of convexity of Chebyshev sets”, Russian Math. Surveys, 51:6 (1996), 1127–1190 | DOI | DOI | MR | Zbl

[13] A. L. Brown, “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279:1 (1987), 87–101 | DOI | MR | Zbl

[14] H. Berens, L. Hetzelt, “Die metrische Struktur der Sonnen in $\ell_\infty(n)$”, Aequationes Math., 27:3 (1984), 274–287 | DOI | MR | Zbl

[15] I. G. Tsar'kov, “New criteria for the existence of a continuous $\varepsilon$-selection”, Math. Notes, 104:5 (2018), 727–734 | DOI | DOI | MR | Zbl