Positive solutions of superlinear elliptic~problems with discontinuous non-linearities
Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 262-278

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an elliptic boundary-value problem with a homogeneous Dirichlet boundary condition, a parameter and a discontinuous non-linearity. The positive parameter appears as a multiplicative term in the non-linearity, and the problem has a zero solution for any value of the parameter. The non-linearity has superlinear growth at infinity. We prove the existence of positive solutions by a topological method.
Keywords: superlinear elliptic problem, parameter, discontinuous non-linearity, topological method.
Mots-clés : positive solution
@article{IM2_2021_85_2_a3,
     author = {V. N. Pavlenko and D. K. Potapov},
     title = {Positive solutions of superlinear elliptic~problems with discontinuous non-linearities},
     journal = {Izvestiya. Mathematics },
     pages = {262--278},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a3/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - D. K. Potapov
TI  - Positive solutions of superlinear elliptic~problems with discontinuous non-linearities
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 262
EP  - 278
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a3/
LA  - en
ID  - IM2_2021_85_2_a3
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A D. K. Potapov
%T Positive solutions of superlinear elliptic~problems with discontinuous non-linearities
%J Izvestiya. Mathematics 
%D 2021
%P 262-278
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a3/
%G en
%F IM2_2021_85_2_a3
V. N. Pavlenko; D. K. Potapov. Positive solutions of superlinear elliptic~problems with discontinuous non-linearities. Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 262-278. http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a3/