Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_2_a2, author = {M. G. Grigoryan and L. N. Galoyan}, title = {Functions universal with respect to the trigonometric system}, journal = {Izvestiya. Mathematics }, pages = {241--261}, publisher = {mathdoc}, volume = {85}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a2/} }
M. G. Grigoryan; L. N. Galoyan. Functions universal with respect to the trigonometric system. Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 241-261. http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a2/
[1] G. D. Birkhoff, “Démonstration d'un théorème élémentaire sur les fonctions entières”, C. R. Acad. Sci. Paris, 189 (1929), 473–475 | Zbl
[2] J. Marcinkiewicz, “Sur les nombres dérivés”, Fundamenta Math., 24 (1935), 305–308 | DOI | Zbl
[3] V. G. Krotov, “On the smoothness of universal Marcinkiewicz functions and universal trigonometrical series”, Soviet Math. (Iz. VUZ), 35:8 (1991), 24–28 | MR | Zbl
[4] G. R. MacLane, “Sequences of derivatives and normal families”, J. Analyse Math., 2 (1952), 72–87 | DOI | MR | Zbl
[5] S. M. Voronin, “Theorem on the “universality” of the Riemann zeta-function”, Math. USSR-Izv., 9:3 (1975), 443–453 | DOI | MR | Zbl
[6] D. E. Menshov, “O chastnykh summakh trigonometricheskikh ryadov”, Matem. sb., 20(62):2 (1947), 197–238 | MR | Zbl
[7] A. A. Talalyan, “O skhodimosti pochti vsyudu podposledovatelnostei chastnykh summ obschikh ortogonalnykh ryadov”, Izv. AN Arm. SSR. Ser. matem., 10:3 (1957), 17–34 | MR | Zbl
[8] G. G. Gevorkyan, K. A. Navasardyan, “On Walsh series with monotone coefficients”, Izv. Math., 63:1 (1999), 37–55 | DOI | DOI | MR | Zbl
[9] N. B. Pogosyan, “Predstavlenie izmerimykh funktsii bazisami $L_{p}[0, 1]$, ($p\geq 2$)”, Dokl. AN Arm. SSR, 63:4 (1976), 205–209 | MR | Zbl
[10] M. G. Grigorian, “On the representation of functions by orthogonal series in weighted $L^{p}$ spaces”, Studia Math., 134:3 (1999), 207–216 | DOI | MR | Zbl
[11] M. Zh. Grigoryan, “Predstavlenie funktsii klassov $L^{p}[0, 1]$, $1\leq p2$, ortogonalnymi ryadami”, Dokl. AN Arm. SSR, 67:5 (1978), 269–274 | Zbl
[12] M. G. Grigorian, “An example of universal orthogonal series”, J. Contemp. Math. Anal., 35:4 (2000), 23–43 | MR | Zbl
[13] M. G. Grigoryan, “On the universal and strong $(L^1,L^\infty)$-property related to Fourier–Walsh series”, Banach J. Math. Anal., 11:3 (2017), 698–712 | DOI | MR | Zbl
[14] M. G. Grigoryan, A. A. Sargsyan, “On the universal function for the class $L^{p}[0,1]$, $p\in(0,1)$”, J. Funct. Anal., 270:8 (2016), 3111–3133 | DOI | MR | Zbl
[15] M. G. Grigoryan, K. A. Navasardyan, “Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series”, Izv. Math., 80:6 (2016), 1057–1083 | DOI | DOI | MR | Zbl
[16] A. Sargsyan, M. Grigoryan, “Universal function for a weighted space $L_{\mu}^{1}[0,1]$”, Positivity, 21:3 (2017), 1457–1482 | DOI | MR | Zbl
[17] M. G. Grigoryan, A. A. Sargsyan, “The structure of universal functions for $L^p$-spaces, $p\in(0,1)$”, Sb. Math., 209:1 (2018), 35–55 | DOI | DOI | MR | Zbl
[18] K.-G. Grosse-Erdmann, Holomorphe Monster und universelle Funktionen, Ph.D. thesis, Univ. of Trier, Trier, 1987, Mitt. Math. Sem. Giessen, 176, Selbstverlag des Math. Inst., Giessen, 1987, iv+84 pp. | MR
[19] W. Luh, “Universal approximation properties of overconvergent power series on open sets”, Analysis, 6:2–3 (1986), 191–207 | DOI | MR | Zbl
[20] W. Luh, “Entire functions with various universal properties”, Complex Variables Theory Appl., 31:1 (1996), 87–96 | DOI | MR | Zbl
[21] C. K. Chui, M. N. Parnes, “Approximation by overconvergence of a power series”, J. Math. Anal. Appl., 36:3 (1971), 693–696 | DOI | MR | Zbl
[22] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl
[23] S. V. Konyagin, “Limits of indeterminacy of trigonometric series”, Math. Notes, 44:6 (1988), 910–920 | DOI | MR | Zbl
[24] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | DOI | MR | MR | Zbl | Zbl
[25] Y. Katznelson, “Trigonometric series with positive partial sums”, Bull. Amer. Math. Soc., 71:5 (1965), 718–719 | DOI | MR | Zbl
[26] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | MR | Zbl | Zbl