Functions universal with respect to the trigonometric system
Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 241-261

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an integrable function whose Fourier series possesses the following property. After an appropriate choice of signs of the coefficients of this series, the partial sums of the resulting series are dense in $L^p$, $p\in(0,1)$.
Keywords: universal function, universal trigonometric series, Fourier series
Mots-clés : convergence in $L^p$.
@article{IM2_2021_85_2_a2,
     author = {M. G. Grigoryan and L. N. Galoyan},
     title = {Functions universal with respect to the trigonometric system},
     journal = {Izvestiya. Mathematics },
     pages = {241--261},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a2/}
}
TY  - JOUR
AU  - M. G. Grigoryan
AU  - L. N. Galoyan
TI  - Functions universal with respect to the trigonometric system
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 241
EP  - 261
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a2/
LA  - en
ID  - IM2_2021_85_2_a2
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%A L. N. Galoyan
%T Functions universal with respect to the trigonometric system
%J Izvestiya. Mathematics 
%D 2021
%P 241-261
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a2/
%G en
%F IM2_2021_85_2_a2
M. G. Grigoryan; L. N. Galoyan. Functions universal with respect to the trigonometric system. Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 241-261. http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a2/