Functions universal with respect to the trigonometric system
Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 241-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an integrable function whose Fourier series possesses the following property. After an appropriate choice of signs of the coefficients of this series, the partial sums of the resulting series are dense in $L^p$, $p\in(0,1)$.
Keywords: universal function, universal trigonometric series, Fourier series
Mots-clés : convergence in $L^p$.
@article{IM2_2021_85_2_a2,
     author = {M. G. Grigoryan and L. N. Galoyan},
     title = {Functions universal with respect to the trigonometric system},
     journal = {Izvestiya. Mathematics },
     pages = {241--261},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a2/}
}
TY  - JOUR
AU  - M. G. Grigoryan
AU  - L. N. Galoyan
TI  - Functions universal with respect to the trigonometric system
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 241
EP  - 261
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a2/
LA  - en
ID  - IM2_2021_85_2_a2
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%A L. N. Galoyan
%T Functions universal with respect to the trigonometric system
%J Izvestiya. Mathematics 
%D 2021
%P 241-261
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a2/
%G en
%F IM2_2021_85_2_a2
M. G. Grigoryan; L. N. Galoyan. Functions universal with respect to the trigonometric system. Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 241-261. http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a2/

[1] G. D. Birkhoff, “Démonstration d'un théorème élémentaire sur les fonctions entières”, C. R. Acad. Sci. Paris, 189 (1929), 473–475 | Zbl

[2] J. Marcinkiewicz, “Sur les nombres dérivés”, Fundamenta Math., 24 (1935), 305–308 | DOI | Zbl

[3] V. G. Krotov, “On the smoothness of universal Marcinkiewicz functions and universal trigonometrical series”, Soviet Math. (Iz. VUZ), 35:8 (1991), 24–28 | MR | Zbl

[4] G. R. MacLane, “Sequences of derivatives and normal families”, J. Analyse Math., 2 (1952), 72–87 | DOI | MR | Zbl

[5] S. M. Voronin, “Theorem on the “universality” of the Riemann zeta-function”, Math. USSR-Izv., 9:3 (1975), 443–453 | DOI | MR | Zbl

[6] D. E. Menshov, “O chastnykh summakh trigonometricheskikh ryadov”, Matem. sb., 20(62):2 (1947), 197–238 | MR | Zbl

[7] A. A. Talalyan, “O skhodimosti pochti vsyudu podposledovatelnostei chastnykh summ obschikh ortogonalnykh ryadov”, Izv. AN Arm. SSR. Ser. matem., 10:3 (1957), 17–34 | MR | Zbl

[8] G. G. Gevorkyan, K. A. Navasardyan, “On Walsh series with monotone coefficients”, Izv. Math., 63:1 (1999), 37–55 | DOI | DOI | MR | Zbl

[9] N. B. Pogosyan, “Predstavlenie izmerimykh funktsii bazisami $L_{p}[0, 1]$, ($p\geq 2$)”, Dokl. AN Arm. SSR, 63:4 (1976), 205–209 | MR | Zbl

[10] M. G. Grigorian, “On the representation of functions by orthogonal series in weighted $L^{p}$ spaces”, Studia Math., 134:3 (1999), 207–216 | DOI | MR | Zbl

[11] M. Zh. Grigoryan, “Predstavlenie funktsii klassov $L^{p}[0, 1]$, $1\leq p2$, ortogonalnymi ryadami”, Dokl. AN Arm. SSR, 67:5 (1978), 269–274 | Zbl

[12] M. G. Grigorian, “An example of universal orthogonal series”, J. Contemp. Math. Anal., 35:4 (2000), 23–43 | MR | Zbl

[13] M. G. Grigoryan, “On the universal and strong $(L^1,L^\infty)$-property related to Fourier–Walsh series”, Banach J. Math. Anal., 11:3 (2017), 698–712 | DOI | MR | Zbl

[14] M. G. Grigoryan, A. A. Sargsyan, “On the universal function for the class $L^{p}[0,1]$, $p\in(0,1)$”, J. Funct. Anal., 270:8 (2016), 3111–3133 | DOI | MR | Zbl

[15] M. G. Grigoryan, K. A. Navasardyan, “Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series”, Izv. Math., 80:6 (2016), 1057–1083 | DOI | DOI | MR | Zbl

[16] A. Sargsyan, M. Grigoryan, “Universal function for a weighted space $L_{\mu}^{1}[0,1]$”, Positivity, 21:3 (2017), 1457–1482 | DOI | MR | Zbl

[17] M. G. Grigoryan, A. A. Sargsyan, “The structure of universal functions for $L^p$-spaces, $p\in(0,1)$”, Sb. Math., 209:1 (2018), 35–55 | DOI | DOI | MR | Zbl

[18] K.-G. Grosse-Erdmann, Holomorphe Monster und universelle Funktionen, Ph.D. thesis, Univ. of Trier, Trier, 1987, Mitt. Math. Sem. Giessen, 176, Selbstverlag des Math. Inst., Giessen, 1987, iv+84 pp. | MR

[19] W. Luh, “Universal approximation properties of overconvergent power series on open sets”, Analysis, 6:2–3 (1986), 191–207 | DOI | MR | Zbl

[20] W. Luh, “Entire functions with various universal properties”, Complex Variables Theory Appl., 31:1 (1996), 87–96 | DOI | MR | Zbl

[21] C. K. Chui, M. N. Parnes, “Approximation by overconvergence of a power series”, J. Math. Anal. Appl., 36:3 (1971), 693–696 | DOI | MR | Zbl

[22] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl

[23] S. V. Konyagin, “Limits of indeterminacy of trigonometric series”, Math. Notes, 44:6 (1988), 910–920 | DOI | MR | Zbl

[24] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | DOI | MR | MR | Zbl | Zbl

[25] Y. Katznelson, “Trigonometric series with positive partial sums”, Bull. Amer. Math. Soc., 71:5 (1965), 718–719 | DOI | MR | Zbl

[26] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | MR | Zbl | Zbl