Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_2_a1, author = {L. D. Gogoladze and G. Cagareishvili}, title = {General {Fourier} coefficients and convergence almost everywhere}, journal = {Izvestiya. Mathematics }, pages = {228--240}, publisher = {mathdoc}, volume = {85}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a1/} }
L. D. Gogoladze; G. Cagareishvili. General Fourier coefficients and convergence almost everywhere. Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 228-240. http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a1/
[1] L. Gogoladze, V. Tsagareishvili, “Some classes of functions and Fourier coefficients with respect to general orthonormal systems”, Proc. Steklov Inst. Math., 280 (2013), 156–168 | DOI | MR | Zbl
[2] G. Alexits, Convergence problems of orthogonal series, Internat. Ser. Monogr. Pure Appl. Math., 20, Pergamon Press, New York–Oxford–Paris, 1961, ix+350 pp. | MR | MR | Zbl | Zbl
[3] S. Banach, “Sur la divergence des séries orthogonales”, Studia Math., 9 (1940), 135–155 | DOI | MR | Zbl
[4] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934, xii+314 pp. | MR | MR | Zbl
[5] L. Gogoladze, V. Tsagareishvili, “Fourier coefficients of continuous functions”, Math. Notes, 91:5 (2012), 645–656 | DOI | DOI | MR | Zbl
[6] L. Gogoladze, V. Tsagareishvili, “Convergence of the Fourier series of functions Lip1 with respect to general orthonormal systems”, Ukrainian Math. J., 69:4 (2017), 546–560 | DOI | MR | Zbl
[7] L. Gogoladze, V. Tsagareishvili, “Summability of general Fourier series”, Publ. Math. Debrecen, 91:3-4 (2017), 391–402 | DOI | MR | Zbl
[8] L. D. Gogoladze, V. Sh. Tsagareishvili, “Unconditional convergence of Fourier series for functions of bounded variation”, Siberian Math. J., 59:1 (2018), 65–72 | DOI | DOI | MR | Zbl
[9] N. J. Fine, “On the Walsh functions”, Trans. Amer. Math. Soc., 65 (1949), 372–414 | DOI | MR | Zbl
[10] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl