General Fourier coefficients and convergence almost everywhere
Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 228-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system $(\varphi_n)$ in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men'shov–Rademacher theorem. We also prove a theorem saying that every system $(\varphi_n)$ contains a subsystem $(\varphi_{n_k})$ with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1].
Keywords: orthonormal system, functions of bounded variation, Banach space.
Mots-clés : Fourier coefficients
@article{IM2_2021_85_2_a1,
     author = {L. D. Gogoladze and G. Cagareishvili},
     title = {General {Fourier} coefficients and convergence almost everywhere},
     journal = {Izvestiya. Mathematics },
     pages = {228--240},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a1/}
}
TY  - JOUR
AU  - L. D. Gogoladze
AU  - G. Cagareishvili
TI  - General Fourier coefficients and convergence almost everywhere
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 228
EP  - 240
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a1/
LA  - en
ID  - IM2_2021_85_2_a1
ER  - 
%0 Journal Article
%A L. D. Gogoladze
%A G. Cagareishvili
%T General Fourier coefficients and convergence almost everywhere
%J Izvestiya. Mathematics 
%D 2021
%P 228-240
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a1/
%G en
%F IM2_2021_85_2_a1
L. D. Gogoladze; G. Cagareishvili. General Fourier coefficients and convergence almost everywhere. Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 228-240. http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a1/

[1] L. Gogoladze, V. Tsagareishvili, “Some classes of functions and Fourier coefficients with respect to general orthonormal systems”, Proc. Steklov Inst. Math., 280 (2013), 156–168 | DOI | MR | Zbl

[2] G. Alexits, Convergence problems of orthogonal series, Internat. Ser. Monogr. Pure Appl. Math., 20, Pergamon Press, New York–Oxford–Paris, 1961, ix+350 pp. | MR | MR | Zbl | Zbl

[3] S. Banach, “Sur la divergence des séries orthogonales”, Studia Math., 9 (1940), 135–155 | DOI | MR | Zbl

[4] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934, xii+314 pp. | MR | MR | Zbl

[5] L. Gogoladze, V. Tsagareishvili, “Fourier coefficients of continuous functions”, Math. Notes, 91:5 (2012), 645–656 | DOI | DOI | MR | Zbl

[6] L. Gogoladze, V. Tsagareishvili, “Convergence of the Fourier series of functions Lip1 with respect to general orthonormal systems”, Ukrainian Math. J., 69:4 (2017), 546–560 | DOI | MR | Zbl

[7] L. Gogoladze, V. Tsagareishvili, “Summability of general Fourier series”, Publ. Math. Debrecen, 91:3-4 (2017), 391–402 | DOI | MR | Zbl

[8] L. D. Gogoladze, V. Sh. Tsagareishvili, “Unconditional convergence of Fourier series for functions of bounded variation”, Siberian Math. J., 59:1 (2018), 65–72 | DOI | DOI | MR | Zbl

[9] N. J. Fine, “On the Walsh functions”, Trans. Amer. Math. Soc., 65 (1949), 372–414 | DOI | MR | Zbl

[10] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl