General Fourier coefficients and convergence almost everywhere
Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 228-240

Voir la notice de l'article provenant de la source Math-Net.Ru

We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system $(\varphi_n)$ in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men'shov–Rademacher theorem. We also prove a theorem saying that every system $(\varphi_n)$ contains a subsystem $(\varphi_{n_k})$ with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1].
Keywords: orthonormal system, functions of bounded variation, Banach space.
Mots-clés : Fourier coefficients
@article{IM2_2021_85_2_a1,
     author = {L. D. Gogoladze and G. Cagareishvili},
     title = {General {Fourier} coefficients and convergence almost everywhere},
     journal = {Izvestiya. Mathematics },
     pages = {228--240},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a1/}
}
TY  - JOUR
AU  - L. D. Gogoladze
AU  - G. Cagareishvili
TI  - General Fourier coefficients and convergence almost everywhere
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 228
EP  - 240
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a1/
LA  - en
ID  - IM2_2021_85_2_a1
ER  - 
%0 Journal Article
%A L. D. Gogoladze
%A G. Cagareishvili
%T General Fourier coefficients and convergence almost everywhere
%J Izvestiya. Mathematics 
%D 2021
%P 228-240
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a1/
%G en
%F IM2_2021_85_2_a1
L. D. Gogoladze; G. Cagareishvili. General Fourier coefficients and convergence almost everywhere. Izvestiya. Mathematics , Tome 85 (2021) no. 2, pp. 228-240. http://geodesic.mathdoc.fr/item/IM2_2021_85_2_a1/