On the standard conjecture for projective compactifications of N\'eron models of $3$-dimensional
Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 145-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Grothendieck standard conjecture of Lefschetz type holds for a smooth complex projective $4$-dimensional variety $X$ fibred by Abelian varieties (possibly, with degeneracies) over a smooth projective curve if the endomorphism ring $\operatorname{End}_{\overline{\kappa(\eta)}} (X_\eta\otimes_{\kappa(\eta)}\overline{\kappa(\eta)})$ of the generic geometric fibre is not an order of an imaginary quadratic field. This condition holds automatically in the cases when the reduction of the generic scheme fibre $X_\eta$ at some place of the curve is semistable in the sense of Grothendieck and has odd toric rank or the generic geometric fibre is not a simple Abelian variety.
Keywords: standard conjecture, Abelian variety, Néron minimal model, toric rank.
@article{IM2_2021_85_1_a5,
     author = {S. G. Tankeev},
     title = {On the standard conjecture for projective compactifications of {N\'eron} models of $3$-dimensional},
     journal = {Izvestiya. Mathematics },
     pages = {145--175},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a5/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the standard conjecture for projective compactifications of N\'eron models of $3$-dimensional
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 145
EP  - 175
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a5/
LA  - en
ID  - IM2_2021_85_1_a5
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the standard conjecture for projective compactifications of N\'eron models of $3$-dimensional
%J Izvestiya. Mathematics 
%D 2021
%P 145-175
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a5/
%G en
%F IM2_2021_85_1_a5
S. G. Tankeev. On the standard conjecture for projective compactifications of N\'eron models of $3$-dimensional. Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 145-175. http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a5/

[1] A. Grothendieck, “Standard conjectures on algebraic cycles”, Algebraic geometry, Internat. colloq. (Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, 193–199 | MR | Zbl

[2] S. L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 359–386 | MR | Zbl

[3] S. G. Tankeev, “On the standard conjecture for complex Abelian schemes over smooth projective curves”, Izv. Math., 67:3 (2003), 597–635 | DOI | DOI | MR | Zbl

[4] S. G. Tankeev, “On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension”, Izv. Math., 69:1 (2005), 143–162 | DOI | DOI | MR | Zbl

[5] S. G. Tankeev, “Monoidal transformations and conjectures on algebraic cycles”, Izv. Math., 71:3 (2007), 629–655 | DOI | DOI | MR | Zbl

[6] D. I. Lieberman, “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374 | DOI | MR | Zbl

[7] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. Math., 75:5 (2011), 1047–1062 | DOI | DOI | MR | Zbl

[8] D. Arapura, “Motivation for Hodge cycles”, Adv. Math., 207:2 (2006), 762–781 | DOI | MR | Zbl

[9] F. Charles, E. Markman, “The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of $K3$ surfaces”, Compos. Math., 149:3 (2013), 481–494 | DOI | MR | Zbl

[10] O. V. Nikol'skaya, “On algebraic cycles on a fibre product of families of $K3$-surfaces”, Izv. Math., 77:1 (2013), 143–162 | DOI | DOI | MR | Zbl

[11] O. V. Nikolskaya, “Ob algebraicheskikh tsiklakh na rassloennykh proizvedeniyakh neizotrivialnykh semeistv regulyarnykh poverkhnostei s geometricheskim rodom 1”, Model. i analiz inform. sistem, 23:4 (2016), 440–465 | DOI | MR

[12] S. G. Tankeev, “On the standard conjecture and the existence of a Chow–Lefschetz decomposition for complex projective varieties”, Izv. Math., 79:1 (2015), 177–207 | DOI | DOI | MR | Zbl

[13] S. G. Tankeev, “On an inductive approach to the standard conjecture for a fibred complex variety with strong semistable degeneracies”, Izv. Math., 81:6 (2017), 1253–1285 | DOI | DOI | MR | Zbl

[14] S. G. Tankeev, “On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci”, Izv. Math., 83:3 (2019), 613–653 | DOI | DOI | MR | Zbl

[15] S. G. Tankeev, “On the standard conjecture for a $3$-dimensional variety fibred by curves with a non-injective Kodaira–Spencer map”, Izv. Math., 84:5 (2020), 1016–1035 | DOI | DOI | MR

[16] A. Grothendieck, “Modèles de Néron et monodromie”, Groupes de monodromie en géométrie algébrique, Séminaire de géométrie algébrique du Bois-Marie 1967–1969 (SGA 7 I), Lecture Notes in Math., 288, Springer-Verlag, Berlin–New York, 1972, Exp. No. IX, 313–523 | DOI | MR | Zbl

[17] K. Künnemann, “Height pairings for algebraic cycles on abelian varieties”, Ann. Sci. École Norm. Sup. (4), 34:4 (2001), 503–523 | DOI | MR | Zbl

[18] K. Künnemann, “Projective regular models for abelian varieties, semistable reduction, and the height pairing”, Duke Math. J., 95:1 (1998), 161–212 | DOI | MR | Zbl

[19] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40:1 (1971), 5–57 | DOI | MR | Zbl | Zbl

[20] B. B. Gordon, “A survey of the Hodge conjecture for Abelian varieties”, Appendix in:: J. D. Lewis, A survey of the Hodge conjecture, CRM Monogr. Ser., 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1999, 297–356 | MR | Zbl

[21] N. Burbaki, Gruppy i algebry Li, gl. 1–3, Elementy matematiki, Mir, M., 1976, 496 pp. ; гл. 4–6, 1972, 334 с. ; гл. 7, 8, 1978, 342 с. ; N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie, Ch. 1, Actualités Sci. Indust., 1285, 2nd éd., Hermann, Paris, 1971, 146 pp. ; Ch. 2, 3, 1349, 1972, 320 pp. ; Ch. 4–6, 1337, 1968, 288 pp. ; Ch. 7, 8, 1364, 1975, 271 pp. | MR | MR | Zbl | MR | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[22] N. Burbaki, Algebra: moduli, koltsa, formy, Nauka, M., 1966, 555 pp. ; N. Bourbaki, Éléments de mathématique. Livre II: Algèbre, Ch. 6: Groupes et corps ordonnés. Ch. 7: Modules sur les anneaux principaux, Actualités Sci. Indust., 1179, Hermann, Paris, 1952, ii+159+iii pp. ; Ch. 8: Modules et anneaux semi-simples, Actualités Sci. Indust., 1261, 1958, 189 pp. ; Ch. 9: Formes sesquilinéaires et formes quadratiques, Actualités Sci. Indust., 1272, 1959, 211 pp. | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[23] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44 (1974), 5–77 | DOI | MR | Zbl

[24] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. of Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl

[25] C. H. Clemens, “Degeneration of Kähler manifolds”, Duke Math. J., 44:2 (1977), 215–290 | DOI | MR | Zbl

[26] Yu. G. Zarhin, “Weights of simple Lie algebras in the cohomology of algebraic varieties”, Math. USSR-Izv., 24:2 (1985), 245–281 | DOI | MR | Zbl

[27] D. Mumford, “A note on Shimura's paper “Discontinuous groups and Abelian varieties””, Math. Ann., 181:4 (1969), 345–351 | DOI | MR | Zbl

[28] B. J. J. Moonen, Yu. G. Zarhin, “Hodge classes on abelian varieties of low dimension”, Math. Ann., 315:4 (1999), 711–733 | DOI | MR | Zbl

[29] O. V. Oreshkina, On the Hodge group and invariant cycles of a simple Abelian variety with a stable reduction of odd toric rank, 2018, arXiv: 1809.01910

[30] R. Godement, Topologie algébrique et théorie des faisceaux, Actualit'es Sci. Ind., 1252, Publ. Math. Univ. Strasbourg, No. 13, Hermann, Paris, 1958, viii+283 pp. | MR | MR | Zbl | Zbl

[31] E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York–Toronto, ON–London, 1966, xiv+528 pp. | MR | MR | Zbl | Zbl

[32] Vik. S. Kulikov, P. F. Kurchanov, “Complex algebraic varieties: periods of integrals and Hodge structures”, Algebraic geometry III, Encyclopaedia Math. Sci., 36, Springer, Berlin, 1998, 1–217 | DOI | MR | MR | Zbl | Zbl

[33] J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, NJ, 1980, xiii+323 pp. | MR | MR | Zbl | Zbl

[34] C. Voisin, Hodge theory and complex algebraic geometry, Transl. from the French, v. I, Cambridge Stud. Adv. Math., 76, Cambridge Univ. Press, Cambridge, 2002, x+322 pp. ; v. II, 77, 2003, x+351 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[35] S. Lang, Abelian varieties, Reprint of the 1959 original, v. I, II, Springer-Verlag, New York–Berlin, 1983, xii+256 pp. | MR | Zbl

[36] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl

[37] J. D. Lewis, A survey of the Hodge conjecture, CRM Monogr. Ser., 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1999, xvi+368 pp. | MR | Zbl

[38] D. Abramovich, K. Karu, K. Matsuki, J. Wlodarczyk, “Torification and factorization of birational maps”, J. Amer. Math. Soc., 15:3 (2002), 531–572 | DOI | MR | Zbl

[39] N. Bourbaki, Éléments de mathématique. Algèbre. Ch. 10. Algèbre homologique, Masson, Paris, 1980, vii+216 pp. | MR | MR | Zbl | Zbl

[40] W. Fulton, Equivariant cohomology in algebraic geometry. Appendix A. Algebraic topology, Eilenberg lectures, notes by D. Anderson (Columbia Univ., 2007), 2007, 13 pp. http://w3.impa.br/~dave/eilenberg

[41] Bong H. Lian, A. Todorov, Shing-Tung Yau, “Maximal unipotent monodromy for complete intersection CY manifolds”, Amer. J. Math., 127:1 (2005), 1–50 | DOI | MR | Zbl

[42] D. Mumford, Lectures on curves on an algebraic surface, Ann. of Math. Stud., 59, Princeton Univ. Press, Princeton, NJ, 1966, xi+200 pp. | MR | Zbl | Zbl

[43] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland Math. Library, 4, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., New York, 1974, vii+292 pp. | MR | MR | Zbl | Zbl