On the critical exponent ``instantaneous~blow-up'' versus ``local solubility'' in the Cauchy~problem for a~model equation of Sobolev type
Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 111-144
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Cauchy problem for a model partial differential equation of order three with a non-linearity of the form
$|\nabla u|^q$. We prove that when $q\in(1,3/2]$ the Cauchy problem in $\mathbb{R}^3$ has no local-in-time weak solution for a large class of initial functions, while when $q>3/2$ there is a local weak solution.
Keywords:
finite-time blow-up, non-linear waves, instantaneous blow-up.
@article{IM2_2021_85_1_a4,
author = {M. O. Korpusov and A. A. Panin and A. E. Shishkov},
title = {On the critical exponent ``instantaneous~blow-up'' versus ``local solubility'' in the {Cauchy~problem} for a~model equation of {Sobolev} type},
journal = {Izvestiya. Mathematics },
pages = {111--144},
publisher = {mathdoc},
volume = {85},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a4/}
}
TY - JOUR AU - M. O. Korpusov AU - A. A. Panin AU - A. E. Shishkov TI - On the critical exponent ``instantaneous~blow-up'' versus ``local solubility'' in the Cauchy~problem for a~model equation of Sobolev type JO - Izvestiya. Mathematics PY - 2021 SP - 111 EP - 144 VL - 85 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a4/ LA - en ID - IM2_2021_85_1_a4 ER -
%0 Journal Article %A M. O. Korpusov %A A. A. Panin %A A. E. Shishkov %T On the critical exponent ``instantaneous~blow-up'' versus ``local solubility'' in the Cauchy~problem for a~model equation of Sobolev type %J Izvestiya. Mathematics %D 2021 %P 111-144 %V 85 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a4/ %G en %F IM2_2021_85_1_a4
M. O. Korpusov; A. A. Panin; A. E. Shishkov. On the critical exponent ``instantaneous~blow-up'' versus ``local solubility'' in the Cauchy~problem for a~model equation of Sobolev type. Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 111-144. http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a4/