On the critical exponent ``instantaneous~blow-up'' versus ``local solubility'' in the Cauchy~problem for a~model equation of Sobolev type
Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 111-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for a model partial differential equation of order three with a non-linearity of the form $|\nabla u|^q$. We prove that when $q\in(1,3/2]$ the Cauchy problem in $\mathbb{R}^3$ has no local-in-time weak solution for a large class of initial functions, while when $q>3/2$ there is a local weak solution.
Keywords: finite-time blow-up, non-linear waves, instantaneous blow-up.
@article{IM2_2021_85_1_a4,
     author = {M. O. Korpusov and A. A. Panin and A. E. Shishkov},
     title = {On the critical exponent ``instantaneous~blow-up'' versus ``local solubility'' in the {Cauchy~problem} for a~model equation of {Sobolev} type},
     journal = {Izvestiya. Mathematics },
     pages = {111--144},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a4/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. A. Panin
AU  - A. E. Shishkov
TI  - On the critical exponent ``instantaneous~blow-up'' versus ``local solubility'' in the Cauchy~problem for a~model equation of Sobolev type
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 111
EP  - 144
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a4/
LA  - en
ID  - IM2_2021_85_1_a4
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. A. Panin
%A A. E. Shishkov
%T On the critical exponent ``instantaneous~blow-up'' versus ``local solubility'' in the Cauchy~problem for a~model equation of Sobolev type
%J Izvestiya. Mathematics 
%D 2021
%P 111-144
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a4/
%G en
%F IM2_2021_85_1_a4
M. O. Korpusov; A. A. Panin; A. E. Shishkov. On the critical exponent ``instantaneous~blow-up'' versus ``local solubility'' in the Cauchy~problem for a~model equation of Sobolev type. Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 111-144. http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a4/

[1] H. Brezis, X. Cabré, “Some simple nonlinear PDE's without solutions”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1:2 (1998), 223–262 | MR | Zbl

[2] X. Cabre, Y. Martel, “Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier [Existence versus instantaneous blow-up for linear heat equations with singular potentials]”, C. R. Acad. Sci. Paris Sér. I Math., 329:11 (1999), 973–978 | DOI | MR | Zbl

[3] F. B. Weissler, “Local existence and nonexistence for semilinear parabolic equations in $L^p$”, Indiana Univ. Math. J., 29:1 (1980), 79–102 | DOI | MR | Zbl

[4] È. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl

[5] V. A. Galaktionov, J.-L. Vázquez, “The problem of blow-up in nonlinear parabolic equations”, Current developments in partial differential equations (Temuco, 1999), Discrete Contin. Dyn. Syst., 8:2 (2002), 399–433 | DOI | MR | Zbl

[6] J. A. Goldstein, I. Kombe, “Instantaneous blow up”, Advances in differential equations and mathematical physics (Birmingham, AL, 2002), Contemp. Math., 327, Amer. Math. Soc., Providence, RI, 2003, 141–150 | DOI | MR | Zbl

[7] Y. Giga, N. Umeda, “On instant blow-up for semilinear heat equations with growing initial data”, Methods Appl. Anal., 15:2 (2008), 185–195 | DOI | MR | Zbl

[8] E. I. Galakhov, “On the absence of local solutions of several evolutionary problems”, Math. Notes, 86:3 (2009), 314–324 | DOI | DOI | MR | Zbl

[9] E. I. Galakhov, “On the instantaneous blow-up of solutions of some quasilinear evolution problems”, Differ. Equ., 46:3 (2010), 329–338 | DOI | MR | Zbl

[10] B. D. Coleman, R. J. Duffin, V. J. Mizel, “Instability, uniqueness, and nonexistence theorems for the equation $u_t=u_{xx}-u_{xtx}$ on a strip”, Arch. Rational Mech. Anal., 19:2 (1965), 100–116 | DOI | MR | Zbl

[11] G. A. Sviridyuk, “On the general theory of operator semigroups”, Russian Math. Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl

[12] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, De Gruyter Ser. Nonlinear Anal. Appl., 15, Walter de Gruyter Co., Berlin, 2011, xii+648 pp. | DOI | MR | Zbl

[13] M. O. Korpusov, “Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type”, Izv. Math., 79:5 (2015), 955–1012 | DOI | DOI | MR | Zbl

[14] M. O. Korpusov, A. V. Ovchinnikov, A. A. Panin, “Instantaneous blow-up versus local solvability of solutions to the Cauchy problem for the equation of a semiconductor in a magnetic field”, Math. Methods Appl. Sci., 41:17 (2018), 8070–8099 | DOI | MR | Zbl

[15] S. A. Zagrebina, “Nachalno-konechnaya zadacha dlya uravnenii sobolevskogo tipa s silno $(L,p)$-radialnym operatorom”, Matem. zametki SVFU, 19:2 (2012), 39–48 | Zbl

[16] A. A. Zamyshlyaeva, G. A. Sviridyuk, “Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:4 (2016), 5–16 | DOI | Zbl

[17] E. A. Al'shina, N. N. Kalitkin, P. V. Koryakin, “Diagnostics of singularities of exact solutions in computations with error control”, Comput. Math. Math. Phys., 45:10 (2005), 1769–1779 | MR | Zbl

[18] N. N. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005, 224 pp.

[19] A. B. Al'shin, E. A. Al'shina, “Numerical diagnosis of blow-up of solutions of pseudoparabolic equations”, J. Math. Sci. (N.Y.), 148:1 (2008), 143–162 | DOI | MR | Zbl

[20] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up for one Sobolev problem: theoretical approach and numerical analysis”, J. Math. Anal. Appl., 442:2 (2016), 451–468 | DOI | MR | Zbl

[21] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis”, Math. Methods Appl. Sci., 40:7 (2017), 2336–2346 | DOI | MR | Zbl

[22] M. O. Korpusov, D. V. Lukyanenko, E. A. Ovsyannikov, A. A. Panin, “Lokalnaya razreshimost i razrushenie resheniya odnogo uravneniya s kvadratichnoi nekoertsitivnoi nelineinostyu”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:2 (2017), 107–123 | DOI | Zbl

[23] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, G. I. Shlyapugin, “On the blow-up phenomena for a 1-dimensional equation of ion sound waves in a plasma: analytical and numerical investigation”, Math. Methods Appl. Sci., 41:8 (2018), 2906–2929 | DOI | MR | Zbl

[24] M. O. Korpusov, D. V. Lukyanenko, “Instantaneous blow-up versus local solvability for one problem of propagation of nonlinear waves in semiconductors”, J. Math. Anal. Appl., 459:1 (2018), 159–181 | DOI | MR | Zbl

[25] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities”, Izv. Math., 82:2 (2018), 283–317 | DOI | DOI | MR | Zbl

[26] V. L. Bonch-Bruevich, S. G. Kalashnikov, Fizika poluprovodnikov, Nauka, M., 1977, 672 pp.

[27] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl

[28] A. A. Panin, “On local solvability and blow-up of solutions of an abstract nonlinear Volterra integral equation”, Math. Notes, 97:6 (2015), 892–908 | DOI | DOI | MR | Zbl

[29] V. S. Vladimirov, Equations of mathematical physics, Pure Appl. Math., 3, Marcel Dekker, Inc., New York, 1971, vi+418 pp. | MR | MR | Zbl | Zbl

[30] J. Wermer, Potential theory, Lecture Notes in Math., 408, Springer-Verlag, Berlin–New York, 1974, viii+146 pp. | DOI | MR | MR | Zbl | Zbl