Interior estimates for solutions of linear elliptic inequalities
Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 92-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the wedge of solutions of the inequality $A(u) \geqslant 0$, where $A$ is a linear elliptic operator of order $2m$ acting on functions \linebreak of $n$ variables. We establish interior estimates of the form $\|u; W_p^{2m-1}(\omega)\| \leqslant C(\omega,\Omega) \|u;L(\Omega)\|$ for the elements of this wedge, where $\omega$ is a compact subdomain of $\Omega$, $W_p^{2 m-1}(\omega)$ is the Sobolev space, $p (n-1)$, $L(\Omega)$ is the Lebesgue space of integrable functions, and the constant $C(\omega,\Omega)$ is independent of $u$.
Keywords: wedge, function, elliptic inequality, Banach space.
Mots-clés : norm
@article{IM2_2021_85_1_a3,
     author = {V. S. Klimov},
     title = {Interior estimates for solutions of linear elliptic inequalities},
     journal = {Izvestiya. Mathematics },
     pages = {92--110},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a3/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Interior estimates for solutions of linear elliptic inequalities
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 92
EP  - 110
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a3/
LA  - en
ID  - IM2_2021_85_1_a3
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Interior estimates for solutions of linear elliptic inequalities
%J Izvestiya. Mathematics 
%D 2021
%P 92-110
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a3/
%G en
%F IM2_2021_85_1_a3
V. S. Klimov. Interior estimates for solutions of linear elliptic inequalities. Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 92-110. http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a3/

[1] L. Hörmander, Notions of convexity, Progr. Math., 127, Birkhäuser Boston, Inc., Boston, MA, 1994, viii+414 pp. | MR | Zbl

[2] V. A. Malyshev, “Nonlinear embedding theorems”, St. Petersburg Math. J., 5:6 (1994), 1045–1073 | MR | Zbl

[3] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991, viii+286 pp. | DOI | MR | MR | Zbl | Zbl

[4] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | DOI | MR | MR | Zbl | Zbl

[5] Ya. Roitberg, Elliptic boundary value problems in the spaces of distributions, Math. Appl., 384, Kluwer Acad. Publ., Dordrecht, 1996, xii+415 pp. | DOI | MR | Zbl

[6] Yu. P. Krasovskiĭ, “Isolation of singularities of the Green's function”, Math. USSR-Izv., 1:5 (1967), 935–966 | DOI | MR | Zbl

[7] V. A. Solonnikov, “The Green's matrices for elliptic boundary value problems. I”, Proc. Steklov Inst. Math., 110 (1970), 123–170 | MR | Zbl

[8] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, E. I. Pustylnik, P. E. Sobolevskiĭ, Integral operators in spaces of summable functions, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis, Noordhoff International Publishing, Leiden, 1976, xv+520 pp. | MR | MR | Zbl | Zbl

[9] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford–Elmsford, NY, 1982, xiv+589 pp. | MR | MR | Zbl

[10] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | MR | Zbl | Zbl

[11] A. Sadullaev, R. Madrakhimov, “Smoothness of subharmonic functions”, Math. USSR-Sb., 69:1 (1991), 179–195 | DOI | MR | Zbl

[12] K. Maurin, Metody przestrzeni Hilberta, Monogr. Mat., 36, PWN, Warsaw, 1959, 363 pp. | MR | MR | Zbl | Zbl

[13] M. L. Gol'dman, “On imbedding generalized Nikol'skiĭ–Besov spaces in Lorentz spaces”, Proc. Steklov Inst. Math., 172 (1987), 143–154 | MR | Zbl

[14] V. S. Klimov, “Nontrivial solutions of boundary value problems for semilinear elliptic equations”, Math. USSR-Izv., 5:2 (1971), 445–457 | DOI | MR | Zbl

[15] V. S. Klimov, A. N. Pavlenko, “Reverse functional inequalities and their applications to nonlinear elliptic boundary value problems”, Siberian Math. J., 42:4 (2001), 656–667 | DOI | MR | Zbl