Interior estimates for solutions of linear elliptic inequalities
Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 92-110

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the wedge of solutions of the inequality $A(u) \geqslant 0$, where $A$ is a linear elliptic operator of order $2m$ acting on functions \linebreak of $n$ variables. We establish interior estimates of the form $\|u; W_p^{2m-1}(\omega)\| \leqslant C(\omega,\Omega) \|u;L(\Omega)\|$ for the elements of this wedge, where $\omega$ is a compact subdomain of $\Omega$, $W_p^{2 m-1}(\omega)$ is the Sobolev space, $p (n-1)$, $L(\Omega)$ is the Lebesgue space of integrable functions, and the constant $C(\omega,\Omega)$ is independent of $u$.
Keywords: wedge, function, elliptic inequality, Banach space.
Mots-clés : norm
@article{IM2_2021_85_1_a3,
     author = {V. S. Klimov},
     title = {Interior estimates for solutions of linear elliptic inequalities},
     journal = {Izvestiya. Mathematics },
     pages = {92--110},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a3/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Interior estimates for solutions of linear elliptic inequalities
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 92
EP  - 110
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a3/
LA  - en
ID  - IM2_2021_85_1_a3
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Interior estimates for solutions of linear elliptic inequalities
%J Izvestiya. Mathematics 
%D 2021
%P 92-110
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a3/
%G en
%F IM2_2021_85_1_a3
V. S. Klimov. Interior estimates for solutions of linear elliptic inequalities. Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 92-110. http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a3/