Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_1_a2, author = {A. V. Zvyagin}, title = {Investigation of the weak solubility of the fractional {Voigt} alpha-model}, journal = {Izvestiya. Mathematics }, pages = {61--91}, publisher = {mathdoc}, volume = {85}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a2/} }
A. V. Zvyagin. Investigation of the weak solubility of the fractional Voigt alpha-model. Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 61-91. http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a2/
[1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204, Elsevier Sci. B.V., Amsterdam, 2006, xvi+523 pp. | MR | Zbl
[2] J. Leray, “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl
[3] D. D. Holm, J. E. Marsden, T. S. Ratiu, “The Euler–Poincaré models of ideal fluids with nonlinear dispersion”, Phys. Rev. Lett., 80:19 (1998), 4173–4177 | DOI
[4] D. D. Holm, J. E. Marsden, T. S. Ratiu, “The Euler–Poincaré equations and semidirect products with applications to continuum theories”, Adv. Math., 137:1 (1998), 1–81 | DOI | MR | Zbl
[5] Shiyi Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, S. Wynne, “Camassa–Holm equations as a closure model for turbulent channel and pipe flow”, Phys. Rev. Lett., 81:24 (1998), 5338–5341 | DOI | MR | Zbl
[6] P. G. Lemarié-Rieusset, The Navier–Stokes problem in the 21st century, CRC Press, Boca Raton, FL, 2016, xxii+718 pp. | DOI | MR | Zbl
[7] A. Cheskidov, D. D. Holm, E. Olson, E. S. Titi, “On a Leray-$\alpha$ model of turbulence”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2055 (2005), 629–649 | DOI | MR | Zbl
[8] A. V. Zvyagin, “Solvability of thermoviscoelastic problem for Leray alpha-model”, Russian Math. (Iz. VUZ), 60:10 (2016), 59–63 | DOI | MR | Zbl
[9] C. Foias, D. D. Holm, E. S. Titi, “The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory”, J. Dynam. Differential Equations, 14:1 (2002), 1–35 | DOI | MR | Zbl
[10] A. V. Zvyagin, D. M. Polyakov, “On the solvability of the Jeffreys–Oldroyd-$\alpha$ model”, Differ. Equ., 52:6 (2016), 761–766 | DOI | DOI | MR | Zbl
[11] A. V. Zvyagin, V. G. Zvyagin, D. M. Polyakov, “On solvability of a fluid flow alpha-model with memory”, Russian Math. (Iz. VUZ), 62:6 (2018), 69–74 | DOI | MR | Zbl
[12] A. V. Zvyagin, V. G. Zvyagin, D. M. Polyakov, “Dissipative solvability of an alpha model of fluid flow with memory”, Comput. Math. Math. Phys., 59:7 (2019), 1185–1198 | DOI | DOI | MR | Zbl
[13] V. Zvyagin, V. Orlov, “Weak solvability of fractional Voigt model of viscoelasticity”, Discrete Contin. Dyn. Syst., 38:12 (2018), 6327–6350 | DOI | MR
[14] F. Mainardi, G. Spada, “Creep, relaxation and viscosity properties for basic fractional models in rheology”, Eur. Phys. J. Special Topics, 193 (2011), 133–160 | DOI
[15] M. Caputo, F. Mainardi, “A new dissipation model based on memory mechanism”, Pure Appl. Geophys., 91:1 (1971), 134–147 | DOI | MR | Zbl
[16] A. V. Fursikov, Optimal control of distributed systems. Theory and applications, Transl. Math. Monogr., 187, Amer. Math. Soc., Providence, RI, 2000, xiv+305 pp. | DOI | MR | Zbl | Zbl
[17] V. G. Zvyagin, M. V. Turbin, Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND URSS, M., 2012, 416 pp.
[18] V. P. Orlov, P. E. Sobolevskii, “On mathematical models of a viscoelasticity with a memory”, Differential Integral Equations, 4:1 (1991), 103–115 | MR | Zbl
[19] V. G. Zvyagin, V. T. Dmitrienko, “On weak solutions of a regularized model of a viscoelastic fluid”, Differ. Equ., 38:12 (2002), 1731–1744 | DOI | MR | Zbl
[20] R. J. DiPerna, P. L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl
[21] G. Crippa, C. de Lellis, “Estimates and regularity results for the DiPerna–Lions flow”, J. Reine Angew. Math., 2008:616 (2008), 15–46 | DOI | MR | Zbl
[22] G. Crippa, “The ordinary differential equation with non-Lipschitz vector fields”, Boll. Unione Mat. Ital. (9), 1:2 (2008), 333–348 | MR | Zbl
[23] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, 2nd rev. ed., North-Holland Publishing Co., Amsterdam–New York, 1979, x+519 pp. | MR | MR | Zbl | Zbl
[24] A. V. Zvyagin, “Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a viscoelastic medium”, Russian Math. Surveys, 74:3 (2019), 549–551 | DOI | DOI | MR | Zbl
[25] V. G. Zvyagin, “Topological approximation approach to study of mathematical problems of hydrodynamics”, J. Math. Sci. (N.Y.), 201:6 (2014), 830–858 | DOI | MR | Zbl
[26] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russian Math. Surveys, 19:3 (1964), 53–157 | DOI | MR | Zbl
[27] S. Agmon, “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems”, Comm. Pure Appl. Math., 15 (1962), 119–147 | MR | Zbl
[28] J.-P. Aubin, “Un théorème de compacité”, C. R. Acad. Sci. Paris, 256 (1963), 5042–5044 | MR | Zbl
[29] J. Simon, “Compact sets in the space $L^p(0, T; B)$”, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96 | DOI | MR | Zbl
[30] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives. Theory and applications, Gordon and Breach Science Publishers, Yverdon, 1993, xxxvi+976 pp. | MR | MR | Zbl | Zbl
[31] B. N. Sadovskii, “Limit-compact and condensing operators”, Russian Math. Surveys, 27:1 (1972), 85–155 | DOI | MR | Zbl
[32] V. T. Dmitrienko, V. G. Zvyagin, “Homotopy classification of a class of continuous mappings”, Math. Notes, 31:5 (1982), 404–410 | DOI | MR | Zbl
[33] R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Measures of noncompactness and condensing operators, Oper. Theory Adv. Appl., 55, Birkhäuser Verlag, Basel, 1992, viii+249 pp. | DOI | MR | MR | Zbl | Zbl