Investigation of the weak solubility of the fractional Voigt alpha-model
Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 61-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to investigating the weak solubility of the alpha-model for a fractional viscoelastic Voigt medium. The model involves the Voigt rheological relation with a left Riemann–Liouville fractional derivative, which accounts for the medium's memory. The memory is considered along the trajectories of fluid particles determined by the velocity field. Since the velocity field is not smooth enough to uniquely determine the trajectories for every initial value, we introduce weak solutions of this problem using regular Lagrangian flows. On the basis of the approximation-topological approach to the study of hydrodynamical problems, we prove the existence of weak solutions of the alpha-model and establish the convergence of solutions of the alpha-model to solutions of the original model as the parameter $\alpha$ tends to zero.
Keywords: existence theorem, weak solubility, alpha-model, fractional derivative.
Mots-clés : Voigt model
@article{IM2_2021_85_1_a2,
     author = {A. V. Zvyagin},
     title = {Investigation of the weak solubility of the fractional {Voigt} alpha-model},
     journal = {Izvestiya. Mathematics },
     pages = {61--91},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a2/}
}
TY  - JOUR
AU  - A. V. Zvyagin
TI  - Investigation of the weak solubility of the fractional Voigt alpha-model
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 61
EP  - 91
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a2/
LA  - en
ID  - IM2_2021_85_1_a2
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%T Investigation of the weak solubility of the fractional Voigt alpha-model
%J Izvestiya. Mathematics 
%D 2021
%P 61-91
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a2/
%G en
%F IM2_2021_85_1_a2
A. V. Zvyagin. Investigation of the weak solubility of the fractional Voigt alpha-model. Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 61-91. http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a2/

[1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204, Elsevier Sci. B.V., Amsterdam, 2006, xvi+523 pp. | MR | Zbl

[2] J. Leray, “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl

[3] D. D. Holm, J. E. Marsden, T. S. Ratiu, “The Euler–Poincaré models of ideal fluids with nonlinear dispersion”, Phys. Rev. Lett., 80:19 (1998), 4173–4177 | DOI

[4] D. D. Holm, J. E. Marsden, T. S. Ratiu, “The Euler–Poincaré equations and semidirect products with applications to continuum theories”, Adv. Math., 137:1 (1998), 1–81 | DOI | MR | Zbl

[5] Shiyi Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, S. Wynne, “Camassa–Holm equations as a closure model for turbulent channel and pipe flow”, Phys. Rev. Lett., 81:24 (1998), 5338–5341 | DOI | MR | Zbl

[6] P. G. Lemarié-Rieusset, The Navier–Stokes problem in the 21st century, CRC Press, Boca Raton, FL, 2016, xxii+718 pp. | DOI | MR | Zbl

[7] A. Cheskidov, D. D. Holm, E. Olson, E. S. Titi, “On a Leray-$\alpha$ model of turbulence”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2055 (2005), 629–649 | DOI | MR | Zbl

[8] A. V. Zvyagin, “Solvability of thermoviscoelastic problem for Leray alpha-model”, Russian Math. (Iz. VUZ), 60:10 (2016), 59–63 | DOI | MR | Zbl

[9] C. Foias, D. D. Holm, E. S. Titi, “The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory”, J. Dynam. Differential Equations, 14:1 (2002), 1–35 | DOI | MR | Zbl

[10] A. V. Zvyagin, D. M. Polyakov, “On the solvability of the Jeffreys–Oldroyd-$\alpha$ model”, Differ. Equ., 52:6 (2016), 761–766 | DOI | DOI | MR | Zbl

[11] A. V. Zvyagin, V. G. Zvyagin, D. M. Polyakov, “On solvability of a fluid flow alpha-model with memory”, Russian Math. (Iz. VUZ), 62:6 (2018), 69–74 | DOI | MR | Zbl

[12] A. V. Zvyagin, V. G. Zvyagin, D. M. Polyakov, “Dissipative solvability of an alpha model of fluid flow with memory”, Comput. Math. Math. Phys., 59:7 (2019), 1185–1198 | DOI | DOI | MR | Zbl

[13] V. Zvyagin, V. Orlov, “Weak solvability of fractional Voigt model of viscoelasticity”, Discrete Contin. Dyn. Syst., 38:12 (2018), 6327–6350 | DOI | MR

[14] F. Mainardi, G. Spada, “Creep, relaxation and viscosity properties for basic fractional models in rheology”, Eur. Phys. J. Special Topics, 193 (2011), 133–160 | DOI

[15] M. Caputo, F. Mainardi, “A new dissipation model based on memory mechanism”, Pure Appl. Geophys., 91:1 (1971), 134–147 | DOI | MR | Zbl

[16] A. V. Fursikov, Optimal control of distributed systems. Theory and applications, Transl. Math. Monogr., 187, Amer. Math. Soc., Providence, RI, 2000, xiv+305 pp. | DOI | MR | Zbl | Zbl

[17] V. G. Zvyagin, M. V. Turbin, Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND URSS, M., 2012, 416 pp.

[18] V. P. Orlov, P. E. Sobolevskii, “On mathematical models of a viscoelasticity with a memory”, Differential Integral Equations, 4:1 (1991), 103–115 | MR | Zbl

[19] V. G. Zvyagin, V. T. Dmitrienko, “On weak solutions of a regularized model of a viscoelastic fluid”, Differ. Equ., 38:12 (2002), 1731–1744 | DOI | MR | Zbl

[20] R. J. DiPerna, P. L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl

[21] G. Crippa, C. de Lellis, “Estimates and regularity results for the DiPerna–Lions flow”, J. Reine Angew. Math., 2008:616 (2008), 15–46 | DOI | MR | Zbl

[22] G. Crippa, “The ordinary differential equation with non-Lipschitz vector fields”, Boll. Unione Mat. Ital. (9), 1:2 (2008), 333–348 | MR | Zbl

[23] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, 2nd rev. ed., North-Holland Publishing Co., Amsterdam–New York, 1979, x+519 pp. | MR | MR | Zbl | Zbl

[24] A. V. Zvyagin, “Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a viscoelastic medium”, Russian Math. Surveys, 74:3 (2019), 549–551 | DOI | DOI | MR | Zbl

[25] V. G. Zvyagin, “Topological approximation approach to study of mathematical problems of hydrodynamics”, J. Math. Sci. (N.Y.), 201:6 (2014), 830–858 | DOI | MR | Zbl

[26] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russian Math. Surveys, 19:3 (1964), 53–157 | DOI | MR | Zbl

[27] S. Agmon, “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems”, Comm. Pure Appl. Math., 15 (1962), 119–147 | MR | Zbl

[28] J.-P. Aubin, “Un théorème de compacité”, C. R. Acad. Sci. Paris, 256 (1963), 5042–5044 | MR | Zbl

[29] J. Simon, “Compact sets in the space $L^p(0, T; B)$”, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96 | DOI | MR | Zbl

[30] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives. Theory and applications, Gordon and Breach Science Publishers, Yverdon, 1993, xxxvi+976 pp. | MR | MR | Zbl | Zbl

[31] B. N. Sadovskii, “Limit-compact and condensing operators”, Russian Math. Surveys, 27:1 (1972), 85–155 | DOI | MR | Zbl

[32] V. T. Dmitrienko, V. G. Zvyagin, “Homotopy classification of a class of continuous mappings”, Math. Notes, 31:5 (1982), 404–410 | DOI | MR | Zbl

[33] R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Measures of noncompactness and condensing operators, Oper. Theory Adv. Appl., 55, Birkhäuser Verlag, Basel, 1992, viii+249 pp. | DOI | MR | MR | Zbl | Zbl