Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_1_a1, author = {D. V. Grishin and Ya. Yu. Pavlovskiy}, title = {Representation of solutions of the {Cauchy} problem for a~one dimensional {Schr\"} odinger equation}, journal = {Izvestiya. Mathematics }, pages = {24--60}, publisher = {mathdoc}, volume = {85}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a1/} }
TY - JOUR AU - D. V. Grishin AU - Ya. Yu. Pavlovskiy TI - Representation of solutions of the Cauchy problem for a~one dimensional Schr\" odinger equation JO - Izvestiya. Mathematics PY - 2021 SP - 24 EP - 60 VL - 85 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a1/ LA - en ID - IM2_2021_85_1_a1 ER -
%0 Journal Article %A D. V. Grishin %A Ya. Yu. Pavlovskiy %T Representation of solutions of the Cauchy problem for a~one dimensional Schr\" odinger equation %J Izvestiya. Mathematics %D 2021 %P 24-60 %V 85 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a1/ %G en %F IM2_2021_85_1_a1
D. V. Grishin; Ya. Yu. Pavlovskiy. Representation of solutions of the Cauchy problem for a~one dimensional Schr\" odinger equation. Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 24-60. http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a1/
[1] F. A. Berezin, M. A. Shubin, The Schrödinger equation, Math. Appl. (Soviet Ser.), 66, Kluwer Acad. Publ., Dordrecht, 1991, xviii+555 pp. | DOI | MR | MR | Zbl | Zbl
[2] O. G. Smolyanov, A. G. Tokarev, A. Truman, “Hamiltonian Feynman path integrals via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl
[3] R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics”, Rev. Modern Physics, 20:2 (1948), 367–387 | DOI | MR | Zbl
[4] R. P. Feynman, “An operator calculus having applications in quantum electrodynamics”, Phys. Rev. (2), 84 (1951), 108–128 | DOI | MR | Zbl
[5] Ya. A. Butko, “Formuly Feinmana dlya evolyutsionnykh polugrupp”, Nauka i obrazovanie, 2014, no. 3, 95–132
[6] O. G. Smolyanov, “Feynman type formulae for quantum evolution and diffusion on manifolds and graphs”, Quantum bio-informatics III, QP-PQ: Quantum Probab. White Noise Anal., 26, World Sci. Publ., Hackensack, NJ, 2010, 337–347 | DOI | MR
[7] O. G. Smolyanov, “Schrodinger type semigroups via Feynman formulae and all that”, Quantum bio-informatics V, QP-PQ: Quantum Probab. White Noise Anal., 30, World Sci. Publ., Hackensack, NJ, 2013, 301–313 | DOI | MR | Zbl
[8] O. G. Smolyanov, “Feynman formulae for evolutionary equations”, Trends in stochastic analysis, London Math. Soc. Lect. Note Ser., 353, Cambridge Univ. Press, Cambridge, 2009, 283–302 | DOI | MR | Zbl
[9] A. S. Plyashechnik, “Feynman formula for Schrödinger-type equations with time- and space-dependent coefficients”, Russ. J. Math. Phys., 19:3 (2012), 340–359 | DOI | MR | Zbl
[10] A. S. Plyashechnik, “Feynman formulas for second-order parabolic equations with variable coefficients”, Russ. J. Math. Phys., 20:3 (2013), 377–379 | DOI | MR | Zbl
[11] I. D. Remizov, “Solution of a Cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula”, Russ. J. Math. Phys., 19:3 (2012), 360–372 | DOI | MR | Zbl
[12] I. D. Remizov, “Solution to a parabolic differential equation in Hilbert space via Feynman formula – I”, Model. i analiz inform. sistem, 22:3 (2015), 337–355 | DOI | MR
[13] I. D. Remizov, “Explicit formula for evolution semigroup for diffusion in Hilbert space”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21:4 (2018), 1850025, 35 pp. | DOI | MR | Zbl
[14] I. D. Remizov, “Quasi-Feynman formulas – a method of obtaining the evolution operator for the Schrödinger equation”, J. Funct. Anal., 270:12 (2016), 4540–4557 | DOI | MR | Zbl
[15] I. D. Remizov, “Solution of the Schrödinger equation with the use of the translation operator”, Math. Notes, 100:3 (2016), 499–503 | DOI | DOI | MR | Zbl
[16] I. D. Remizov, M. F. Starodubtseva, “Quasi-Feynman formulas providing solutions of multidimensional Schrödinger equations with unbounded potential”, Math. Notes, 104:5 (2018), 767–772 | DOI | DOI | MR | Zbl
[17] I. D. Remizov, “New method for constructing Chernoff functions”, Differ. Equ., 53:4 (2017), 566–570 | DOI | DOI | MR | Zbl
[18] I. D. Remizov, “Feynman and quasi-Feynman formulas for evolution equations”, Dokl. Math., 96:2 (2017), 433–437 | DOI | DOI | MR | Zbl
[19] I. D. Remizov, “Approximations to the solution of Cauchy problem for a linear evolution equation via the space shift operator (second-order equation example)”, Appl. Math. Comput., 328 (2018), 243–246 | DOI | MR | Zbl
[20] I. D. Remizov, “Solution-giving formula to Cauchy problem for multidimensional parabolic equation with variable coefficients”, J. Math. Phys., 60:7 (2019), 071505, 8 pp. | DOI | MR | Zbl
[21] I. D. Remizov, “Formulas that represent Cauchy problem solution for momentum and position Schrödinger equation”, Potential Anal., 52:3 (2020), 339–370 | DOI | MR | Zbl
[22] V. Zh. Sakbaev, “Averaging of random walks and shift-invariant measures on a Hilbert space”, Theoret. and Math. Phys., 191:3 (2017), 886–909 | DOI | DOI | MR | Zbl
[23] V. Zh. Sakbaev, “Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations”, J. Math. Sci. (N.Y.), 241:4 (2019), 469–500 | DOI | MR | Zbl
[24] L. A. Borisov, Yu. N. Orlov, V. Zh. Sakbaev, “Formuly Feinmana dlya usredneniya polugrupp, porozhdaemykh operatorami tipa Shredingera”, Preprinty IPM im. M. V. Keldysha, 2015, 057, 23 pp.
[25] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians”, Proc. Steklov Inst. Math., 285 (2014), 222–232 | DOI | DOI | MR | Zbl
[26] M. S. Buzinov, “Feynman and Quasi-Feynman formulae for higher order Schrödinger equation”, International conference-school “Infinite-dimensional dynamics, dissipative systems, and attractors”. Book of abstracts (N. Novgorod, 2015), Lobachevsky State Univ., N. Novgorod, 2015, 23–24
[27] M. S. Buzinov, Ya. A. Butko, “Formuly Feinmana dlya parabolicheskogo uravneniya s bigarmonicheskim differentsialnym operatorom v konfiguratsionnom prostranstve”, Nauka i obrazovanie, 2012, no. 8, 135–154 | DOI
[28] D. V. Grishin, Ya. Yu. Pavlovskii, I. D. Remizov, E. S. Rozhkova, D. A. Samsonov, “O novoi forme predstavleniya resheniya zadachi Koshi dlya uravneniya Shredingera na pryamoi”, Vestnik MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 2017, no. 1, 26–42 | DOI
[29] V. V. Dobrovitski, E. R. Rakhmetov, B. Barbara, A. K. Zvezdin, “Quantum tunnelling of magnetization in uniaxial magnetic clusters”, Acta Phys. Polon. A, 92:2 (1997), 473–476 | DOI
[30] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983, viii+279 pp. | DOI | MR | Zbl
[31] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000, xxii+586 pp. | DOI | MR | Zbl
[32] K.-J. Engel, R. Nagel, A short course on operator semigroups, Universitext, Springer, New York, 2006, x+247 pp. | DOI | MR | Zbl
[33] P. R. Chernoff, “Note on product formulas for operator semigroups”, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR | Zbl
[34] V. I. Bogachev, O. G. Smolyanov, Real and functional analysis, Moscow Lectures, 4, Springer, Cham, 2020, xvi+586 pp. | DOI | Zbl
[35] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158 | DOI | DOI | MR | Zbl
[36] O. G. Smolyanov, H. V. Weizsäcker, O. Wittich, “Chernoff's theorem and discrete time approximations of Brownian motion on manifolds”, Potential Anal., 26:1 (2007), 1–29 | DOI | MR | Zbl
[37] A. Ya. Helemskii, Lectures and exercises on functional analysis, Transl. Math. Monogr., 233, Amer. Math. Soc., Providence, RI, 2006, xviii+468 pp. | DOI | MR | Zbl
[38] S. L. Sobolev, Applications of functional analysis in mathematical physics, Transl. Math. Monogr., 7, Amer. Math. Soc., Providence, RI, 1963, vii+239 pp. | MR | MR | Zbl
[39] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011, xiv+599 pp. | DOI | MR | Zbl
[40] L. C. Evans, Partial differential equations, Grad. Stud. Math., 19, 2nd ed., Amer. Math. Soc., Providence, RI, 2010, xxii+749 pp. | DOI | MR | Zbl
[41] V. I. Smirnov, A course of higher mathematics, v. V, ADIWES International Series in Mathematics, Integration and functional analysis, Pergamon Press, Oxford–New York; Addison-Wesley Publishing Co., Inc., Reading, MA–London, 1964, xiv+635 pp. | DOI | MR | MR | Zbl | Zbl