Representation of solutions of the Cauchy problem for a~one dimensional Schr\" odinger equation
Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 24-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for a Schrödinger equation whose Hamiltonian is the difference of the operator of multiplication by the potential and the operator of taking the second derivative. Here the potential is a real differentiable function of a real variable such that this function and its derivative are bounded. This equation has been studied since the advent of quantum mechanics and is still a good model case for various methods of solving partial differential equations. We find solutions of the Cauchy problem in the form of quasi-Feynman formulae by using Remizov's theorem. Quasi-Feynman formulae are relatives of Feynman formulae containing multiple integrals of infinite multiplicity. Their proof is easier than that of Feynman formulae but they give longer expressions for the solutions. We provide detailed proofs of all theorems and deliberately restrict the spectrum of our results to the domain of classical mathematical analysis and elements of real analysis trying to avoid general methods of functional analysis. As a result, the paper is long but accessible to readers who are not experts in the field of functional analysis.
Keywords: Schrödinger equation, Cauchy problem, Chernoff tangency, operator semigroup.
Mots-clés : quasi-Feynman formula
@article{IM2_2021_85_1_a1,
     author = {D. V. Grishin and Ya. Yu. Pavlovskiy},
     title = {Representation of solutions of the {Cauchy} problem for a~one dimensional {Schr\"} odinger equation},
     journal = {Izvestiya. Mathematics },
     pages = {24--60},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a1/}
}
TY  - JOUR
AU  - D. V. Grishin
AU  - Ya. Yu. Pavlovskiy
TI  - Representation of solutions of the Cauchy problem for a~one dimensional Schr\" odinger equation
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 24
EP  - 60
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a1/
LA  - en
ID  - IM2_2021_85_1_a1
ER  - 
%0 Journal Article
%A D. V. Grishin
%A Ya. Yu. Pavlovskiy
%T Representation of solutions of the Cauchy problem for a~one dimensional Schr\" odinger equation
%J Izvestiya. Mathematics 
%D 2021
%P 24-60
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a1/
%G en
%F IM2_2021_85_1_a1
D. V. Grishin; Ya. Yu. Pavlovskiy. Representation of solutions of the Cauchy problem for a~one dimensional Schr\" odinger equation. Izvestiya. Mathematics , Tome 85 (2021) no. 1, pp. 24-60. http://geodesic.mathdoc.fr/item/IM2_2021_85_1_a1/

[1] F. A. Berezin, M. A. Shubin, The Schrödinger equation, Math. Appl. (Soviet Ser.), 66, Kluwer Acad. Publ., Dordrecht, 1991, xviii+555 pp. | DOI | MR | MR | Zbl | Zbl

[2] O. G. Smolyanov, A. G. Tokarev, A. Truman, “Hamiltonian Feynman path integrals via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl

[3] R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics”, Rev. Modern Physics, 20:2 (1948), 367–387 | DOI | MR | Zbl

[4] R. P. Feynman, “An operator calculus having applications in quantum electrodynamics”, Phys. Rev. (2), 84 (1951), 108–128 | DOI | MR | Zbl

[5] Ya. A. Butko, “Formuly Feinmana dlya evolyutsionnykh polugrupp”, Nauka i obrazovanie, 2014, no. 3, 95–132

[6] O. G. Smolyanov, “Feynman type formulae for quantum evolution and diffusion on manifolds and graphs”, Quantum bio-informatics III, QP-PQ: Quantum Probab. White Noise Anal., 26, World Sci. Publ., Hackensack, NJ, 2010, 337–347 | DOI | MR

[7] O. G. Smolyanov, “Schrodinger type semigroups via Feynman formulae and all that”, Quantum bio-informatics V, QP-PQ: Quantum Probab. White Noise Anal., 30, World Sci. Publ., Hackensack, NJ, 2013, 301–313 | DOI | MR | Zbl

[8] O. G. Smolyanov, “Feynman formulae for evolutionary equations”, Trends in stochastic analysis, London Math. Soc. Lect. Note Ser., 353, Cambridge Univ. Press, Cambridge, 2009, 283–302 | DOI | MR | Zbl

[9] A. S. Plyashechnik, “Feynman formula for Schrödinger-type equations with time- and space-dependent coefficients”, Russ. J. Math. Phys., 19:3 (2012), 340–359 | DOI | MR | Zbl

[10] A. S. Plyashechnik, “Feynman formulas for second-order parabolic equations with variable coefficients”, Russ. J. Math. Phys., 20:3 (2013), 377–379 | DOI | MR | Zbl

[11] I. D. Remizov, “Solution of a Cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula”, Russ. J. Math. Phys., 19:3 (2012), 360–372 | DOI | MR | Zbl

[12] I. D. Remizov, “Solution to a parabolic differential equation in Hilbert space via Feynman formula – I”, Model. i analiz inform. sistem, 22:3 (2015), 337–355 | DOI | MR

[13] I. D. Remizov, “Explicit formula for evolution semigroup for diffusion in Hilbert space”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21:4 (2018), 1850025, 35 pp. | DOI | MR | Zbl

[14] I. D. Remizov, “Quasi-Feynman formulas – a method of obtaining the evolution operator for the Schrödinger equation”, J. Funct. Anal., 270:12 (2016), 4540–4557 | DOI | MR | Zbl

[15] I. D. Remizov, “Solution of the Schrödinger equation with the use of the translation operator”, Math. Notes, 100:3 (2016), 499–503 | DOI | DOI | MR | Zbl

[16] I. D. Remizov, M. F. Starodubtseva, “Quasi-Feynman formulas providing solutions of multidimensional Schrödinger equations with unbounded potential”, Math. Notes, 104:5 (2018), 767–772 | DOI | DOI | MR | Zbl

[17] I. D. Remizov, “New method for constructing Chernoff functions”, Differ. Equ., 53:4 (2017), 566–570 | DOI | DOI | MR | Zbl

[18] I. D. Remizov, “Feynman and quasi-Feynman formulas for evolution equations”, Dokl. Math., 96:2 (2017), 433–437 | DOI | DOI | MR | Zbl

[19] I. D. Remizov, “Approximations to the solution of Cauchy problem for a linear evolution equation via the space shift operator (second-order equation example)”, Appl. Math. Comput., 328 (2018), 243–246 | DOI | MR | Zbl

[20] I. D. Remizov, “Solution-giving formula to Cauchy problem for multidimensional parabolic equation with variable coefficients”, J. Math. Phys., 60:7 (2019), 071505, 8 pp. | DOI | MR | Zbl

[21] I. D. Remizov, “Formulas that represent Cauchy problem solution for momentum and position Schrödinger equation”, Potential Anal., 52:3 (2020), 339–370 | DOI | MR | Zbl

[22] V. Zh. Sakbaev, “Averaging of random walks and shift-invariant measures on a Hilbert space”, Theoret. and Math. Phys., 191:3 (2017), 886–909 | DOI | DOI | MR | Zbl

[23] V. Zh. Sakbaev, “Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations”, J. Math. Sci. (N.Y.), 241:4 (2019), 469–500 | DOI | MR | Zbl

[24] L. A. Borisov, Yu. N. Orlov, V. Zh. Sakbaev, “Formuly Feinmana dlya usredneniya polugrupp, porozhdaemykh operatorami tipa Shredingera”, Preprinty IPM im. M. V. Keldysha, 2015, 057, 23 pp.

[25] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians”, Proc. Steklov Inst. Math., 285 (2014), 222–232 | DOI | DOI | MR | Zbl

[26] M. S. Buzinov, “Feynman and Quasi-Feynman formulae for higher order Schrödinger equation”, International conference-school “Infinite-dimensional dynamics, dissipative systems, and attractors”. Book of abstracts (N. Novgorod, 2015), Lobachevsky State Univ., N. Novgorod, 2015, 23–24

[27] M. S. Buzinov, Ya. A. Butko, “Formuly Feinmana dlya parabolicheskogo uravneniya s bigarmonicheskim differentsialnym operatorom v konfiguratsionnom prostranstve”, Nauka i obrazovanie, 2012, no. 8, 135–154 | DOI

[28] D. V. Grishin, Ya. Yu. Pavlovskii, I. D. Remizov, E. S. Rozhkova, D. A. Samsonov, “O novoi forme predstavleniya resheniya zadachi Koshi dlya uravneniya Shredingera na pryamoi”, Vestnik MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 2017, no. 1, 26–42 | DOI

[29] V. V. Dobrovitski, E. R. Rakhmetov, B. Barbara, A. K. Zvezdin, “Quantum tunnelling of magnetization in uniaxial magnetic clusters”, Acta Phys. Polon. A, 92:2 (1997), 473–476 | DOI

[30] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983, viii+279 pp. | DOI | MR | Zbl

[31] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000, xxii+586 pp. | DOI | MR | Zbl

[32] K.-J. Engel, R. Nagel, A short course on operator semigroups, Universitext, Springer, New York, 2006, x+247 pp. | DOI | MR | Zbl

[33] P. R. Chernoff, “Note on product formulas for operator semigroups”, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR | Zbl

[34] V. I. Bogachev, O. G. Smolyanov, Real and functional analysis, Moscow Lectures, 4, Springer, Cham, 2020, xvi+586 pp. | DOI | Zbl

[35] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158 | DOI | DOI | MR | Zbl

[36] O. G. Smolyanov, H. V. Weizsäcker, O. Wittich, “Chernoff's theorem and discrete time approximations of Brownian motion on manifolds”, Potential Anal., 26:1 (2007), 1–29 | DOI | MR | Zbl

[37] A. Ya. Helemskii, Lectures and exercises on functional analysis, Transl. Math. Monogr., 233, Amer. Math. Soc., Providence, RI, 2006, xviii+468 pp. | DOI | MR | Zbl

[38] S. L. Sobolev, Applications of functional analysis in mathematical physics, Transl. Math. Monogr., 7, Amer. Math. Soc., Providence, RI, 1963, vii+239 pp. | MR | MR | Zbl

[39] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011, xiv+599 pp. | DOI | MR | Zbl

[40] L. C. Evans, Partial differential equations, Grad. Stud. Math., 19, 2nd ed., Amer. Math. Soc., Providence, RI, 2010, xxii+749 pp. | DOI | MR | Zbl

[41] V. I. Smirnov, A course of higher mathematics, v. V, ADIWES International Series in Mathematics, Integration and functional analysis, Pergamon Press, Oxford–New York; Addison-Wesley Publishing Co., Inc., Reading, MA–London, 1964, xiv+635 pp. | DOI | MR | MR | Zbl | Zbl