On the uniform approximation of functions of bounded variation by Lagrange interpolation
Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1224-1249

Voir la notice de l'article provenant de la source Math-Net.Ru

Let sequences $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ satisfy the relations $\alpha_n\in\mathbb{R}$, $\beta_n\in\mathbb{R}$, $\alpha_n=o(\sqrt{n/\ln n})$, $\beta_n=o(\sqrt{n/\ln n})$ as $n\to \infty $, and let $[a,b]\subset (0,\pi)$ and $f\in C[a,b]$. We redefine the function $f$ as $F$ on the interval $[0,\pi]$ by polygonal arcs in such a way that the function remains continuous and vanishes on a neighbourhood of the ends of the interval. Also let the function $f$ and the pair of sequences $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ be connected by the equiconvergence condition. Then for the classical Lagrange–Jacobi interpolation processes $\mathcal{L}_n^{(\alpha_n,\beta_n)}(F,\cos\theta)$ to approximate $f$ uniformly with respect to $\theta $ on $[a,b]$ it is sufficient that $f$ have bounded variation $V^{b}_{a}(f)\infty$ on $[a,b]$. In particular, if the sequences $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are bounded, then for the classical Lagrange–Jacobi interpolation processes $\mathcal{L}_n^{(\alpha_n,\beta_n)}(F,\cos\theta)$ to approximate $f$ uniformly with respect to $\theta $ on $[a,b]$ it is sufficient that the variation of $f$ be bounded on $[a,b]$, $V^{b}_{a}(f)\infty$.
Keywords: sinc-approximations, interpolation of functions, uniform approximation, bounded variation.
Mots-clés : interpolation polynomials
@article{IM2_2020_84_6_a5,
     author = {A. Yu. Trynin},
     title = {On the uniform approximation of functions of bounded variation by {Lagrange} interpolation},
     journal = {Izvestiya. Mathematics },
     pages = {1224--1249},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a5/}
}
TY  - JOUR
AU  - A. Yu. Trynin
TI  - On the uniform approximation of functions of bounded variation by Lagrange interpolation
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 1224
EP  - 1249
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a5/
LA  - en
ID  - IM2_2020_84_6_a5
ER  - 
%0 Journal Article
%A A. Yu. Trynin
%T On the uniform approximation of functions of bounded variation by Lagrange interpolation
%J Izvestiya. Mathematics 
%D 2020
%P 1224-1249
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a5/
%G en
%F IM2_2020_84_6_a5
A. Yu. Trynin. On the uniform approximation of functions of bounded variation by Lagrange interpolation. Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1224-1249. http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a5/