On the uniform approximation of functions of bounded variation by Lagrange interpolation
Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1224-1249.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let sequences $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ satisfy the relations $\alpha_n\in\mathbb{R}$, $\beta_n\in\mathbb{R}$, $\alpha_n=o(\sqrt{n/\ln n})$, $\beta_n=o(\sqrt{n/\ln n})$ as $n\to \infty $, and let $[a,b]\subset (0,\pi)$ and $f\in C[a,b]$. We redefine the function $f$ as $F$ on the interval $[0,\pi]$ by polygonal arcs in such a way that the function remains continuous and vanishes on a neighbourhood of the ends of the interval. Also let the function $f$ and the pair of sequences $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ be connected by the equiconvergence condition. Then for the classical Lagrange–Jacobi interpolation processes $\mathcal{L}_n^{(\alpha_n,\beta_n)}(F,\cos\theta)$ to approximate $f$ uniformly with respect to $\theta $ on $[a,b]$ it is sufficient that $f$ have bounded variation $V^{b}_{a}(f)\infty$ on $[a,b]$. In particular, if the sequences $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are bounded, then for the classical Lagrange–Jacobi interpolation processes $\mathcal{L}_n^{(\alpha_n,\beta_n)}(F,\cos\theta)$ to approximate $f$ uniformly with respect to $\theta $ on $[a,b]$ it is sufficient that the variation of $f$ be bounded on $[a,b]$, $V^{b}_{a}(f)\infty$.
Keywords: sinc-approximations, interpolation of functions, uniform approximation, bounded variation.
Mots-clés : interpolation polynomials
@article{IM2_2020_84_6_a5,
     author = {A. Yu. Trynin},
     title = {On the uniform approximation of functions of bounded variation by {Lagrange} interpolation},
     journal = {Izvestiya. Mathematics },
     pages = {1224--1249},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a5/}
}
TY  - JOUR
AU  - A. Yu. Trynin
TI  - On the uniform approximation of functions of bounded variation by Lagrange interpolation
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 1224
EP  - 1249
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a5/
LA  - en
ID  - IM2_2020_84_6_a5
ER  - 
%0 Journal Article
%A A. Yu. Trynin
%T On the uniform approximation of functions of bounded variation by Lagrange interpolation
%J Izvestiya. Mathematics 
%D 2020
%P 1224-1249
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a5/
%G en
%F IM2_2020_84_6_a5
A. Yu. Trynin. On the uniform approximation of functions of bounded variation by Lagrange interpolation. Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1224-1249. http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a5/

[1] V. I. Krylov, “Skhodimost algebraicheskogo interpolirovaniya po kornyam mnogochlena Chebysheva dlya absolyutno nepreryvnykh funktsii i funktsii s ogranichennym izmeneniem”, Dokl. AN SSSR, 107:3 (1956), 362–365 | MR | Zbl

[2] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1976, 327 pp. | MR | Zbl

[3] A. A. Privalov, Teoriya interpolirovaniya funktsii, v. 1, 2, Izd-vo Saratov. un-ta, Saratov, 1990, 424 pp. | MR | Zbl

[4] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl

[5] Ya. L. Geronimus, “O skhodimosti interpolyatsionnogo protsessa Lagranzha s uzlami v kornyakh ortogonalnykh mnogochlenov”, Izv. AN SSSR. Ser. matem., 27:3 (1963), 529–560 | MR | Zbl

[6] S. A. Agakhanov, “Otsenka funktsii Lebega dlya interpolyatsionnogo protsessa po kornyam polinomov Yakobi”, Izv. vuzov. Matem., 1967, no. 11, 3–6 | MR | Zbl

[7] D. L. Berman, “Printsip monotonii v teorii interpolyatsii funktsii deistvitelnogo peremennogo”, Izv. vuzov. Matem., 1972, no. 4, 10–17 | MR | Zbl

[8] G. P. Nevai, “Zamechaniya ob interpolirovanii”, Acta Math. Acad. Sci. Hungar., 25:1-2 (1974), 123–144 | DOI | MR | Zbl

[9] A. A. Kelzon, “Interpolation of functions with bounded $p$-variation”, Soviet Math. (Iz. VUZ), 22:5 (1978), 99–102 | MR | Zbl

[10] S. S. Pilipchuk, “Tests for the convergence of interpolation processes”, Soviet Math. (Iz. VUZ), 23:12 (1979), 41–46 | MR | Zbl

[11] S. S. Pilipchuk, “Divergence of Lagrange interpolation processes on sets of second category”, Soviet Math. (Iz. VUZ), 23:3 (1979), 30–36 | MR | Zbl

[12] S. S. Pilipchuk, “On divergence of Lagrange interpolation processes in countable sets”, Soviet Math. (Iz. VUZ), 24:12 (1980), 45–52 | MR | Zbl

[13] A. A. Privalov, “The divergence of the Lagrange interpolation processes with respect to Jacobi nodes on a set of positive measure”, Siberian Math. J., 17:4 (1977), 630–648 | DOI | MR | Zbl

[14] A. A. Privalov, “Uniform convergence criteria for Lagrange interpolation processes”, Soviet Math. (Iz. VUZ), 30:5 (1986), 65–77 | MR | Zbl

[15] D. S. Moak, E. B. Saff, R. S. Varga, “On the zeros of Jacobi polynomials $P_n^{(\alpha_n,\beta_n)}(x)$”, Trans. Amer. Math. Soc., 249:1 (1979), 159–162 | DOI | MR | Zbl

[16] A. Yu. Trynin, “A generalization of the Whittaker–Kotel'nikov–Shannon sampling theorem for continuous functions on a closed interval”, Sb. Math., 200:11 (2009), 1633–1679 | DOI | DOI | MR | Zbl

[17] A. Yu. Trynin, Teorema otschetov na otrezke i ee obobscheniya, LAP Lambert Acad. Publ., 2016, 488 pp.

[18] A. Yu. Trynin, “On operators of interpolation with respect to solutions of a Cauchy problem and Lagrange–Jacobi polynomials”, Izv. Math., 75:6 (2011), 1215–1248 | DOI | DOI | MR | Zbl

[19] M. Richardson, L. Trefethen, “A sinc function analogue of Chebfun”, SIAM J. Sci. Comput., 33:5 (2011), 2519–2535 | DOI | MR | Zbl

[20] M. M. Tharwat, “Sinc approximation of eigenvalues of Sturm–Liouville problems with a Gaussian multiplier”, Calcolo, 51:3 (2014), 465–484 | DOI | MR | Zbl

[21] O. E. Livne, A. E. Brandt, “MuST: the multilevel sinc transform”, SIAM J. Sci. Comput., 33:4 (2011), 1726–1738 | DOI | MR | Zbl

[22] B. Bede, L. Coroianu, S. G. Gal, “Introduction and preliminaries”, Approximation by max-product type operators, Springer, Cham, 2016, 1–24 | DOI | MR | Zbl

[23] L. Coroianu, S. G. Gal, “Localization results for the non-truncated max-product sampling operators based on Fejér and sinc-type kernels”, Demonstr. Math., 49:1 (2016), 38–49 | DOI | MR | Zbl

[24] M. M. Tharwat, “Sinc approximation of eigenvalues of Sturm–Liouville problems with a Gaussian multiplier”, Calcolo, 51:3 (2014), 465–484 | DOI | MR | Zbl

[25] I. Ya. Novikov, S. B. Stechkin, “Basic wavelet theory”, Russian Math. Surveys, 53:6 (1998), 1159–1231 | DOI | DOI | MR | Zbl

[26] A. I. Šmukler, T. A. Šulman, “Certain properties of Kotel'nikov series”, Soviet Math. (Iz. VUZ), 18:3 (1974), 81–90 | MR | Zbl

[27] A. Yu. Trynin, “A criterion for the uniform convergence of sinc-approximations on a segment”, Russian Math. (Iz. VUZ), 52:6 (2008), 58–69 | DOI | MR | Zbl

[28] A. Yu. Trynin, “Neobkhodimye i dostatochnye usloviya ravnomernoi na otrezke sink-approksimatsii funktsii ogranichennoi variatsii”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 288–298 | MR | Zbl

[29] A. Yu. Trynin, “On divergence of sinc-approximations everywhere on $(0,\pi)$”, St. Petersburg Math. J., 22:4 (2011), 683–701 | DOI | MR | Zbl

[30] V. P. Sklyarov, “On the best uniform sinc-approximation on a finite interval”, East J. Approx., 14:2 (2008), 183–192 | MR | Zbl

[31] A. Yu. Trynin, “On some properties of sinc approximations of continuous functions on interval”, Ufa Math. J., 7:4 (2015), 111–126 | DOI | MR

[32] A. Ya. Umakhanov, I. I. Sharapudinov, “Interpolyatsiya funktsii summami Uittekera i ikh modifikatsiyami: usloviya ravnomernoi skhodimosti”, Vladikavk. matem. zhurn., 18:4 (2016), 61–70 | MR

[33] A. Yu. Trynin, “On necessary and sufficient conditions for convergence of sinc-approximations”, St. Petersburg Math. J., 27:5 (2016), 825–840 | DOI | MR | Zbl

[34] A. Yu. Trynin, “Approximation of continuous on a segment functions with the help of linear combinations of sincs”, Russian Math. (Iz. VUZ), 60:3 (2016), 63–71 | DOI | MR | Zbl

[35] B. I. Golubov, “Spherical jump of a function and the Bochner–Riesz means of conjugate multiple Fourier series and Fourier integrals”, Math. Notes, 91:4 (2012), 479–486 | DOI | DOI | MR | Zbl

[36] A. Yu. Trynin, “Asymptotic behavior of the solutions and nodal points of Sturm–Liouville differential expressions”, Siberian Math. J., 51:3 (2010), 525–536 | DOI | MR | Zbl

[37] M. I. Dyachenko, “On a class of summability methods for multiple Fourier series”, Sb. Math., 204:3 (2013), 307–322 | DOI | DOI | MR | Zbl

[38] I. E. Maksimenko, M. A. Skopina, “Multidimensional periodic wavelets”, St. Petersburg Math. J., 15:2 (2004), 165–190 | DOI | MR | Zbl

[39] D. I. Borisov, M. Znojil, “On eigenvalues of a $\mathscr{P\!T}$-symmetric operator in a thin layer”, Sb. Math., 208:2 (2017), 173–199 | DOI | DOI | MR | Zbl

[40] A. D. Baranov, “Spectral theory of rank one perturbations of normal compact operators”, St. Petersburg Math. J., 30:5 (2019), 761–802 | DOI | MR | Zbl

[41] A. Yu. Trynin, “One functional class of uniform convergence on a segment of truncated Whittaker cardinal functions”, Int. J. Math. Syst. Sci., 1:3 (2018), 1–9 | DOI

[42] M. A. Oleinik, A. Yu. Trynin, “Issledovanie pogreshnosti v raione zadannogo uzla klassicheskikh i modifitsirovannykh operatorov sinc-approksimatsii nepreryvnoi na otrezke $[0,\pi]$ funktsii”, Modern Science, 2019, no. 4-1, 313–317