Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_6_a4, author = {A. A. Tolstonogov}, title = {Bogolyubov's theorem for a~controlled~system related to a~variational inequality}, journal = {Izvestiya. Mathematics }, pages = {1192--1223}, publisher = {mathdoc}, volume = {84}, number = {6}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a4/} }
A. A. Tolstonogov. Bogolyubov's theorem for a~controlled~system related to a~variational inequality. Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1192-1223. http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a4/
[1] N. Bogoliouboff, “Sur quelques méthodes nouvelles dans le calcul des variations”, Ann. Math. Pura Appl. (4), 7:1 (1929), 249–271 | DOI | Zbl
[2] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland Publishing Co., Amsterdam–New York, 1979, xii+460 pp. | MR | MR | Zbl | Zbl
[3] I. Ekeland, R. Temam, Convex analysis and variational problems, Stud. Math. Appl., 1, North-Holland Publishing Co., Amsterdam–Oxford; American Elsevier Publishing Co., Inc., New York, 1976, ix+402 pp. | MR | MR | Zbl | Zbl
[4] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, Systems with hysteresis, Springer-Verlag, Berlin, 1989, xviii+410 pp. | DOI | MR | MR | Zbl | Zbl
[5] A. Visintin, Differential models of hysteresis, Appl. Math. Sci., 111, Springer-Verlag, Berlin, 1994, xii+407 pp. | DOI | MR | Zbl
[6] P. Krejčí, Hysteresis, convexity and dissipation in hyperbolic equations, GAKUTO Internat. Ser. Math. Sci. Appl., 8, Gakkōtosho Co., Ltd., Tokyo, 1996, viii+211 pp. | MR | Zbl
[7] A. Alexiewicz, “Linear functionals on Denjoy-integrable functions”, Colloq. Math., 1 (1948), 289–293 | DOI | MR | Zbl
[8] A. A. Tolstonogov, “Relaxation in non-convex optimal control problems described by first-order evolution equations”, Sb. Math., 190:11 (1999), 1689–1714 | DOI | DOI | MR | Zbl
[9] A. A. Tolstonogov, “Bogolyubov's theorem under constraints generated by a controlled second-order evolution system”, Izv. Math., 67:5 (2003), 1031–1060 | DOI | DOI | MR | Zbl
[10] A. A. Tolstonogov, “Variational stability of optimal control problems involving subdifferential operators”, Sb. Math., 202:4 (2011), 583–619 | DOI | DOI | MR | Zbl
[11] A. A. Tolstonogov, “Relaxation in nonconvex optimal control problems containing the difference of two subdifferentials”, SIAM J. Control Optim., 54:1 (2016), 175–197 | DOI | MR | Zbl
[12] P. Krejčí, S. A. Timoshin, A. A. Tolstonogov, “Relaxation and optimisation of a phase-field control system with hysteresis”, Internat. J. Control, 91:1 (2018), 85–100 | DOI | MR | Zbl
[13] M. Brokate, P. Krejčí, “Optimal control of ODE systems involving a rate independent variational inequality”, Discrete Contin. Dyn. Syst. Ser. B, 18:2 (2013), 331–348 | DOI | MR | Zbl
[14] L. Adam, J. Outrata, “On optimal control of a sweeping process coupled with an ordinary differential equation”, Discrete Contin. Dyn. Syst. Ser. B, 19:9 (2014), 2709–2738 | DOI | MR | Zbl
[15] C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72 | DOI | MR | Zbl
[16] A. A. Tolstonogov, “Sweeping process with unbounded nonconvex perturbation”, Nonlinear Anal., 108 (2014), 291–301 | DOI | MR | Zbl
[17] J.-P. Aubin, A. Cellina, Differential inclusions. Set-valued maps and viability theory, Grundlehren Math. Wiss., 264, Springer-Verlag, Berlin, 1984, xiii+342 pp. | DOI | MR | Zbl
[18] J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374 | DOI | MR | Zbl
[19] A. A. Tolstonogov, “Mosco convergence of integral functionals and its applications”, Sb. Math., 200:3 (2009), 429–454 | DOI | DOI | MR | Zbl
[20] A. A. Tolstonogov, “Existence and relaxation of solutions for a subdifferential inclusion with unbounded perturbation”, J. Math. Anal. Appl., 447:1 (2017), 269–288 | DOI | MR | Zbl
[21] A. A. Tolstonogov, “Scorza–Dragoni's theorem for multi-valued mappings with variable domain of definition”, Math. Notes, 48:5 (1990), 1151–1158 | DOI | MR | Zbl
[22] F. Hiai, H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7:1 (1977), 149–182 | DOI | MR | Zbl
[23] A. A. Tolstonogov, “Existence and relaxation theorems for extreme continuous selectors of multifunctions with decomposable values”, Topology Appl., 155:8 (2008), 898–905 | DOI | MR | Zbl
[24] E. J. Balder, “Necessary and sufficient condition for $L_1$-strong-weak lower semicontinuity of integral functionals”, Nonlinear Anal., 11:12 (1987), 1399–1404 | DOI | MR | Zbl