Bogolyubov's theorem for a~controlled~system related to a~variational inequality
Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1192-1223.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of minimizing an integral functional on the solutions of a controlled system described by a non-linear differential equation in a separable Banach space and a variational inequality. The variational inequality determines a hysteresis operator whose input is a trajectory of the controlled system and whose output occurs in the right-hand side of the differential equation, in the constraint on the control, and in the functional to be minimized. The constraint on the control is a multivalued map with closed non-convex values and the integrand is a non-convex function of the control. Along with the original problem, we consider the problem of minimizing the integral functional with integrand convexified with respect to the control, on the solutions of the controlled system with convexified constraints on the control (the relaxed problem). By a solution of the controlled system we mean a triple: the output of the hysteresis operator, the trajectory, and the control. We establish a relation between the minimization problem and the relaxed problem. This relation is an analogue of Bogolyubov's classical theorem in the calculus of variations. We also study the relation between the solutions of the original controlled system and those of the system with convexified constraints on the control. This relation is usually referred to as relaxation. For a finite-dimensional space we prove the existence of an optimal solution in the relaxed optimization problem.
Keywords: Bogolyubov's theorem, non-convex integrand, non-convex constraints, relaxation, minimizing sequence.
@article{IM2_2020_84_6_a4,
     author = {A. A. Tolstonogov},
     title = {Bogolyubov's theorem for a~controlled~system related to a~variational inequality},
     journal = {Izvestiya. Mathematics },
     pages = {1192--1223},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a4/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Bogolyubov's theorem for a~controlled~system related to a~variational inequality
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 1192
EP  - 1223
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a4/
LA  - en
ID  - IM2_2020_84_6_a4
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Bogolyubov's theorem for a~controlled~system related to a~variational inequality
%J Izvestiya. Mathematics 
%D 2020
%P 1192-1223
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a4/
%G en
%F IM2_2020_84_6_a4
A. A. Tolstonogov. Bogolyubov's theorem for a~controlled~system related to a~variational inequality. Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1192-1223. http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a4/

[1] N. Bogoliouboff, “Sur quelques méthodes nouvelles dans le calcul des variations”, Ann. Math. Pura Appl. (4), 7:1 (1929), 249–271 | DOI | Zbl

[2] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland Publishing Co., Amsterdam–New York, 1979, xii+460 pp. | MR | MR | Zbl | Zbl

[3] I. Ekeland, R. Temam, Convex analysis and variational problems, Stud. Math. Appl., 1, North-Holland Publishing Co., Amsterdam–Oxford; American Elsevier Publishing Co., Inc., New York, 1976, ix+402 pp. | MR | MR | Zbl | Zbl

[4] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, Systems with hysteresis, Springer-Verlag, Berlin, 1989, xviii+410 pp. | DOI | MR | MR | Zbl | Zbl

[5] A. Visintin, Differential models of hysteresis, Appl. Math. Sci., 111, Springer-Verlag, Berlin, 1994, xii+407 pp. | DOI | MR | Zbl

[6] P. Krejčí, Hysteresis, convexity and dissipation in hyperbolic equations, GAKUTO Internat. Ser. Math. Sci. Appl., 8, Gakkōtosho Co., Ltd., Tokyo, 1996, viii+211 pp. | MR | Zbl

[7] A. Alexiewicz, “Linear functionals on Denjoy-integrable functions”, Colloq. Math., 1 (1948), 289–293 | DOI | MR | Zbl

[8] A. A. Tolstonogov, “Relaxation in non-convex optimal control problems described by first-order evolution equations”, Sb. Math., 190:11 (1999), 1689–1714 | DOI | DOI | MR | Zbl

[9] A. A. Tolstonogov, “Bogolyubov's theorem under constraints generated by a controlled second-order evolution system”, Izv. Math., 67:5 (2003), 1031–1060 | DOI | DOI | MR | Zbl

[10] A. A. Tolstonogov, “Variational stability of optimal control problems involving subdifferential operators”, Sb. Math., 202:4 (2011), 583–619 | DOI | DOI | MR | Zbl

[11] A. A. Tolstonogov, “Relaxation in nonconvex optimal control problems containing the difference of two subdifferentials”, SIAM J. Control Optim., 54:1 (2016), 175–197 | DOI | MR | Zbl

[12] P. Krejčí, S. A. Timoshin, A. A. Tolstonogov, “Relaxation and optimisation of a phase-field control system with hysteresis”, Internat. J. Control, 91:1 (2018), 85–100 | DOI | MR | Zbl

[13] M. Brokate, P. Krejčí, “Optimal control of ODE systems involving a rate independent variational inequality”, Discrete Contin. Dyn. Syst. Ser. B, 18:2 (2013), 331–348 | DOI | MR | Zbl

[14] L. Adam, J. Outrata, “On optimal control of a sweeping process coupled with an ordinary differential equation”, Discrete Contin. Dyn. Syst. Ser. B, 19:9 (2014), 2709–2738 | DOI | MR | Zbl

[15] C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72 | DOI | MR | Zbl

[16] A. A. Tolstonogov, “Sweeping process with unbounded nonconvex perturbation”, Nonlinear Anal., 108 (2014), 291–301 | DOI | MR | Zbl

[17] J.-P. Aubin, A. Cellina, Differential inclusions. Set-valued maps and viability theory, Grundlehren Math. Wiss., 264, Springer-Verlag, Berlin, 1984, xiii+342 pp. | DOI | MR | Zbl

[18] J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374 | DOI | MR | Zbl

[19] A. A. Tolstonogov, “Mosco convergence of integral functionals and its applications”, Sb. Math., 200:3 (2009), 429–454 | DOI | DOI | MR | Zbl

[20] A. A. Tolstonogov, “Existence and relaxation of solutions for a subdifferential inclusion with unbounded perturbation”, J. Math. Anal. Appl., 447:1 (2017), 269–288 | DOI | MR | Zbl

[21] A. A. Tolstonogov, “Scorza–Dragoni's theorem for multi-valued mappings with variable domain of definition”, Math. Notes, 48:5 (1990), 1151–1158 | DOI | MR | Zbl

[22] F. Hiai, H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7:1 (1977), 149–182 | DOI | MR | Zbl

[23] A. A. Tolstonogov, “Existence and relaxation theorems for extreme continuous selectors of multifunctions with decomposable values”, Topology Appl., 155:8 (2008), 898–905 | DOI | MR | Zbl

[24] E. J. Balder, “Necessary and sufficient condition for $L_1$-strong-weak lower semicontinuity of integral functionals”, Nonlinear Anal., 11:12 (1987), 1399–1404 | DOI | MR | Zbl