On the group of~spheromorphisms of a~homogeneous non-locally finite tree
Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1161-1191

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a tree $\mathbb{T}$ all whose vertices have countable valency. Its boundary is the Baire space $\mathbb{B}\simeq\mathbb{N}^\mathbb{N}$ and the set of irrational numbers $\mathbb{R}\setminus\mathbb{Q}$ is identified with $\mathbb{B}$ by continued fraction expansions. Removing $k$ edges from $\mathbb{T}$, we get a forest consisting of copies of $\mathbb{T}$. A spheromorphism (or hierarchomorphism) of $\mathbb{T}$ is an isomorphism of two such subforests regarded as a transformation of $\mathbb{T}$ or $\mathbb{B}$. We denote the group of all spheromorphisms by $\operatorname{Hier}(\mathbb{T})$. We show that the correspondence $\mathbb{R}\setminus \mathbb{Q}\simeq \mathbb{B}$ sends the Thompson group realized by piecewise $\mathrm{PSL}_2(\mathbb{Z})$-transformations to a subgroup of $\operatorname{Hier}(\mathbb{T})$. We construct some unitary representations of $\operatorname{Hier}(\mathbb{T})$, show that the group $\operatorname{Aut}(\mathbb{T})$ of automorphisms is spherical in $\operatorname{Hier}(\mathbb{T})$ and describe the train (enveloping category) of $\operatorname{Hier}(\mathbb{T})$.
Keywords: Thompson group, continued fraction, representation of categories, Bruhat–Tits tree.
Mots-clés : Baire space
@article{IM2_2020_84_6_a3,
     author = {Yu. A. Neretin},
     title = {On the group of~spheromorphisms of a~homogeneous non-locally finite tree},
     journal = {Izvestiya. Mathematics },
     pages = {1161--1191},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a3/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - On the group of~spheromorphisms of a~homogeneous non-locally finite tree
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 1161
EP  - 1191
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a3/
LA  - en
ID  - IM2_2020_84_6_a3
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T On the group of~spheromorphisms of a~homogeneous non-locally finite tree
%J Izvestiya. Mathematics 
%D 2020
%P 1161-1191
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a3/
%G en
%F IM2_2020_84_6_a3
Yu. A. Neretin. On the group of~spheromorphisms of a~homogeneous non-locally finite tree. Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1161-1191. http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a3/