On the group of~spheromorphisms of a~homogeneous non-locally finite tree
Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1161-1191.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a tree $\mathbb{T}$ all whose vertices have countable valency. Its boundary is the Baire space $\mathbb{B}\simeq\mathbb{N}^\mathbb{N}$ and the set of irrational numbers $\mathbb{R}\setminus\mathbb{Q}$ is identified with $\mathbb{B}$ by continued fraction expansions. Removing $k$ edges from $\mathbb{T}$, we get a forest consisting of copies of $\mathbb{T}$. A spheromorphism (or hierarchomorphism) of $\mathbb{T}$ is an isomorphism of two such subforests regarded as a transformation of $\mathbb{T}$ or $\mathbb{B}$. We denote the group of all spheromorphisms by $\operatorname{Hier}(\mathbb{T})$. We show that the correspondence $\mathbb{R}\setminus \mathbb{Q}\simeq \mathbb{B}$ sends the Thompson group realized by piecewise $\mathrm{PSL}_2(\mathbb{Z})$-transformations to a subgroup of $\operatorname{Hier}(\mathbb{T})$. We construct some unitary representations of $\operatorname{Hier}(\mathbb{T})$, show that the group $\operatorname{Aut}(\mathbb{T})$ of automorphisms is spherical in $\operatorname{Hier}(\mathbb{T})$ and describe the train (enveloping category) of $\operatorname{Hier}(\mathbb{T})$.
Keywords: Thompson group, continued fraction, representation of categories, Bruhat–Tits tree.
Mots-clés : Baire space
@article{IM2_2020_84_6_a3,
     author = {Yu. A. Neretin},
     title = {On the group of~spheromorphisms of a~homogeneous non-locally finite tree},
     journal = {Izvestiya. Mathematics },
     pages = {1161--1191},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a3/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - On the group of~spheromorphisms of a~homogeneous non-locally finite tree
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 1161
EP  - 1191
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a3/
LA  - en
ID  - IM2_2020_84_6_a3
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T On the group of~spheromorphisms of a~homogeneous non-locally finite tree
%J Izvestiya. Mathematics 
%D 2020
%P 1161-1191
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a3/
%G en
%F IM2_2020_84_6_a3
Yu. A. Neretin. On the group of~spheromorphisms of a~homogeneous non-locally finite tree. Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1161-1191. http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a3/

[1] A. S. Kechris, Classical descriptive set theory, Grad. Texts in Math., 156, Springer-Verlag, New York, 1995, xviii+402 pp. | DOI | MR | Zbl

[2] N. Lusin, “Sur un exemple arithmétique d'une fonction ne faisant pas partie de la classification de M. René Baire”, C. R. Acad. Sci. Paris, 182 (1926), 1521–1522 | MR | Zbl | Zbl

[3] N. Lusin, Leçons sur les ensembles analytiques et leurs applications, Gauthier-Villars, Paris, 1930, xv+328 pp. | MR | MR | Zbl | Zbl

[4] É. Ghys, V. Sergiescu, “Sur un groupe remarquable de difféomorphismes du cercle”, Comment. Math. Helv., 62:2 (1987), 185–239 | DOI | MR | Zbl

[5] M. Imbert, “Sur l'isomorphisme du groupe de Richard Thompson avec le groupe de Ptolémée”, Geometric Galois actions, v. 2, London Math. Soc. Lecture Note Ser., 243, Cambridge Univ. Press, Cambridge, 1997, 313–324 | DOI | MR | Zbl

[6] A. Fossas, “$\operatorname{PSL}(2,\mathbb{Z})$ as a non-distorted subgroup of Thompson's group $T$”, Indiana Univ. Math. J., 60:6 (2011), 1905–1926 | DOI | MR | Zbl

[7] Yu. A. Neretin, Categories of symmetries and infinite-dimensional groups, London Math. Soc. Monogr. (N.S.), 16, The Clarendon Press, Oxford Univ. Press, New York, 1996, xiv+417 pp. | MR | Zbl

[8] “Unitary representations of $(G,K)$-pairs connected with the infinite symmetric group $S(\infty)$”, Leningrad Math. J., 1:4 (1990), 983–1014 | MR | Zbl

[9] G. I. Olshanski, “Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R. Howe”, Representations of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 269–463 | MR | Zbl

[10] Yu. A. Neretin, “Infinite symmetric groups and combinatorial constructions of topological field theory type”, Russian Math. Surveys, 70:4 (2015), 715–773 | DOI | DOI | MR | Zbl

[11] D. Pickrell, “Separable representations for automorphism groups of infinite symmetric spaces”, J. Funct. Anal., 90:1 (1990), 1–26 | DOI | MR | Zbl

[12] Yu. A. Neretin, Lectures on Gaussian integral operators and classical groups, EMS Ser. Lect. Math., Eur. Math. Soc. (EMS), Zürich, 2011, xii+559 pp. | DOI | MR | Zbl

[13] G. I. Ol'shanskii, “Classification of irreducible representations of groups of automorphisms of Bruhat–Tits trees”, Funct. Anal. Appl., 11:1 (1977), 26–34 | DOI | MR | Zbl

[14] Yu. A. Neretin, “Unitary representations of the diffeomorphism group of the $p$-adic projective line”, Funct. Anal. Appl., 18:4 (1984), 345–346 | DOI | MR | Zbl

[15] Yu. A. Neretin, “On combinatorial analogs of the group of diffeomorphisms of the circle”, Russian Acad. Sci. Izv. Math., 41:2 (1993), 337–349 | DOI | MR | Zbl

[16] Yu. A. Neretin, On spherical unitary representations of groups of spheromorphisms of Bruhat–Tits trees, 2019, to appear in Groups, geometry, and dynamics, arXiv: 1906.12197

[17] Yu. A. Neretin, “Groups of hierarchomorphisms of trees and related Hilbert spaces”, J. Funct. Anal., 200:2 (2003), 505–535 | DOI | MR | Zbl

[18] J. Burillo, S. Cleary, M. Stein, J. Taback, “Combinatorial and metric properties of Thompson's group $T$”, Trans. Amer. Math. Soc., 361:2 (2009), 631–652 | DOI | MR | Zbl

[19] A. S. Kechris, C. Rosendal, “Turbulence, amalgamation, and generic automorphisms of homogeneous structures”, Proc. Lond. Math. Soc. (3), 94:2 (2007), 302–350 | DOI | MR | Zbl

[20] A. Lieberman, “The structure of certain unitary representations of infinite symmetric groups”, Trans. Amer. Math. Soc., 164 (1972), 189–198 | DOI | MR | Zbl

[21] A. Guichardet, Symmetric Hilbert spaces and related topics. Infinitely divisible positive definite functions. Continuous products and tensor products. Gaussian and Poissonian stochastic processes, Lecture Notes in Math., 261, Springer-Verlag, Berlin–New York, 1972, v+197 pp. | DOI | MR | Zbl

[22] G. I. Ol'shanskii, “New “large” groups of type I”, J. Soviet Math., 18:1 (1982), 22–39 | DOI | MR | Zbl

[23] R. S. Ismagilov, “Elementary spherical functions on the group $SL(2,P)$ over a field $P$, which is not locally compact, with respect to the subgroup of matrices with integral elements”, Math. USSR-Izv., 1:2 (1967), 349–380 | DOI | MR | Zbl

[24] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, Inc., New York–London, 1972, xvii+325 pp. | MR | MR | Zbl

[25] G. E. Shilov, Fan Dyk Tin, Integral, mera i proizvodnaya na lineinykh prostranstvakh, Nauka, M., 1967, 192 pp. | MR | Zbl

[26] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998, xii+433 pp. | DOI | MR | MR | Zbl | Zbl