Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_6_a2, author = {S. A. Nazarov}, title = {Threshold resonances and virtual levels in the spectrum of~cylindrical and periodic waveguides}, journal = {Izvestiya. Mathematics }, pages = {1105--1160}, publisher = {mathdoc}, volume = {84}, number = {6}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a2/} }
TY - JOUR AU - S. A. Nazarov TI - Threshold resonances and virtual levels in the spectrum of~cylindrical and periodic waveguides JO - Izvestiya. Mathematics PY - 2020 SP - 1105 EP - 1160 VL - 84 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a2/ LA - en ID - IM2_2020_84_6_a2 ER -
S. A. Nazarov. Threshold resonances and virtual levels in the spectrum of~cylindrical and periodic waveguides. Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1105-1160. http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a2/
[1] P. Exner, H. Kovar̆ík, Quantum waveguides, Theoret. Math. Phys., 22, Springer, Cham, 2015, xxii+382 pp. | DOI | MR | Zbl
[2] R. Mittra, S. W. Lee, Analytical techniques in the theory of guided waves, Macmillan Series in Electrical Science, The Macmillan Co., New York; Collier–Macmillan Ltd., London, 1971, ix+302 pp. | Zbl | Zbl
[3] S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559 | DOI | MR | Zbl
[4] S. A. Nazarov, “Various manifestations of Wood anomalies in locally distorted quantum waveguides”, Comput. Math. Math. Phys., 58:11 (2018), 1838–1855 | DOI | DOI | MR | Zbl
[5] V. P. Maslov, “An asymptotic expression for the eigenfunctions of the equation $\Delta u+k^2u=0$ with boundary conditions on equidistant curves and the propagation of electromagnetic waves in a waveguide”, Soviet Physics. Dokl., 123:3 (1958), 1132–1135 | MR | Zbl
[6] P. Duclos, P. Exner, “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl
[7] V. V. Grushin, “On the eigenvalues of finitely perturbed Laplace operators in infinite cylindrical domains”, Math. Notes, 75:3 (2004), 331–340 | DOI | DOI | MR | Zbl
[8] R. R. Gadyl'shin, “Local perturbations of quantum waveguides”, Theoret. and Math. Phys., 145:3 (2005), 1678–1690 | DOI | DOI | MR | Zbl
[9] D. Borisov, P. Exner, R. Gadyl'shin, “Geometric coupling thresholds in a two-dimensional strip”, J. Math. Phys., 43:12 (2002), 6265–6278 | DOI | MR | Zbl
[10] D. I. Borisov, “Discrete spectrum of an asymmetric pair of waveguides coupled through a window”, Sb. Math., 197:4 (2006), 475–504 | DOI | DOI | MR | Zbl
[11] S. A. Nazarov, “Almost standing waves in a periodic waveguide with resonator, and near-threshold eigenvalues”, St. Petersburg Math. J., 28:3 (2017), 377–410 | DOI | MR | Zbl
[12] D. V. Evans, M. Levitin, D. Vassiliev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[13] S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold”, Siberian Math. J., 51:5 (2010), 866–878 | DOI | MR | Zbl
[14] S. A. Nazarov, “Eigenvalues of the Laplace operator with the Neumann conditions at regular perturbed walls of a waveguide”, J. Math. Sci. (N.Y.), 172:4 (2011), 555–588 | DOI | MR | Zbl
[15] S. A. Nazarov, “Gaps and eigenfrequencies in the spectrum of a periodic acoustic waveguide”, Acoust. Phys., 59:3 (2013), 272–280 | DOI | DOI
[16] I. Roitberg, D. Vassiliev, T. Weidl, “Edge resonance in an elastic semi-strip”, Quart. J. Mech. Appl. Math., 51:1 (1998), 1–13 | DOI | MR | Zbl
[17] A. Holst, D. Vassiliev, “Edge resonance in an elastic semi-infinite cylinder”, Appl. Anal., 74:3-4 (2000), 479–495 | DOI | MR | Zbl
[18] S. A. Nazarov, “Localized elastic fields in periodic waveguides with defects”, J. Appl. Mech. Tech. Phys., 52:2 (2011), 311–320 | DOI | MR | Zbl
[19] S. A. Nazarov, “Elastic waves trapped by a homogeneous anisotropic semicylinder”, Sb. Math., 204:11 (2013), 1639–1670 | DOI | DOI | MR | Zbl
[20] S. A. Nazarov, “Near-threshold effects of the scattering of waves in a distorted elastic two-dimensional waveguide”, J. Appl. Math. Mech., 79:4 (2015), 374–387 | DOI | MR | Zbl
[21] F. A. Berezin, L. D. Faddeev, “A remark on Schrödinger's equation with a singular potential”, Soviet Math. Dokl., 2 (1961), 372–375 | MR | Zbl
[22] Yu. E. Karpeshina, B. S. Pavlov, “Zero radius interaction for the biharmonic and polyharmonic equations”, Math. Notes, 40:1 (1986), 528–533 | DOI | MR | Zbl
[23] B. S. Pavlov, “The theory of extensions and explicitly-soluble models”, Russian Math. Surveys, 42:6 (1987), 127–168 | DOI | MR | Zbl
[24] S. A. Nazarov, “Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces”, Math. USSR-Sb., 65:1 (1990), 229–247 | DOI | MR | Zbl
[25] S. A. Nazarov, M. Specovius-Neugebauer, “Selfadjoint extensions of the Neumann Laplacian in domains with cylindrical outlets”, Comm. Math. Phys., 185:3 (1997), 689–707 | DOI | MR | Zbl
[26] S. A. Nazarov, “Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions”, Proceedings of the St. Petersburg Mathematical Society, v. V, Amer. Math. Soc. Transl. Ser. 2, 193, Amer. Math. Soc., Providence, RI, 1999, 77–125 | DOI | MR | Zbl
[27] I. V. Kamotskiĭ, S. A. Nazarov, “Spectral problems in singularly perturbed domains and selfadjoint extensions of differential operators”, Proceedings of the St. Petersburg Mathematical Society, v. VI, Amer. Math. Soc. Transl. Ser. 2, 199, Amer. Math. Soc., Providence, RI, 2000, 127–181 | DOI | MR | Zbl
[28] M. van Dyke, Perturbation methods in fluid mechanics, Appl. Math. Mech., 8, Academic Press, New York–London, 1964, x+229 pp. | MR | Zbl | Zbl
[29] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl
[30] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris; Academia, Éditeurs, Prague, 1967, 351 pp. | MR | Zbl
[31] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | DOI | MR | Zbl
[32] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16 (1967), 227–313 | MR | Zbl
[33] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl
[34] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl
[35] M. M. Vainberg, V. A. Trenogin, Theory of branching of solutions of non-linear equations, Monogr. Textbooks Pure Appl. Math., Noordhoff International Publishing, Leyden, 1974, xxvi+485 pp. | MR | MR | Zbl | Zbl
[36] M. Reed, B. Simon, Methods of modern mathematical physics, v. III, Scattering theory, Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1979, xv+463 pp. | MR | MR | Zbl | Zbl
[37] P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60 | DOI | MR | Zbl
[38] M. M. Skriganov, “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators”, Proc. Steklov Inst. Math., 171 (1987), 1–121 | MR | Zbl
[39] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birchäuser Verlag, Basel, 1993, xiv+350 pp. | DOI | MR | Zbl
[40] I. M. Gelfand, “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73 (1950), 1117–1120 | MR | Zbl
[41] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | MR | MR | Zbl | Zbl
[42] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl
[43] M. Sh. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | MR | Zbl
[44] A. V. Sobolev, J. Walthoe, “Absolute continuity in periodic waveguides”, Proc. London Math. Soc. (3), 85:3 (2002), 717–741 | DOI | MR | Zbl
[45] T. A. Suslina, R. G. Shterenberg, “Absolute continuity of the spectrum of the magnetic Schrödinger operator with a metric in a two-dimensional periodic waveguide”, St. Petersburg Math. J., 14:2 (2003), 305–343 | MR | Zbl
[46] I. Kachkovskii, N. Filonov, “Absolute continuity of the Schrödinger operator spectrum in a multidimensional cylinder”, St. Petersburg Math. J., 21:1 (2010), 95–109 | DOI | MR | Zbl
[47] K. Miller, “Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients”, Arch. Rational Mech. Anal., 54:2 (1974), 105–117 | DOI | MR | Zbl
[48] N. Filonov, “Second-order elliptic equation of divergence form having a compactly supported solution”, J. Math. Sci. (N.Y.), 106:3 (2001), 3078–3086 | DOI | MR | Zbl
[49] M. N. Demchenko, “Nonunique continuation for the Maxwell system”, J. Math. Sci. (N.Y.), 185:4 (2012), 554–566 | DOI | MR | Zbl
[50] S. A. Nazarov, “Non-self-adjoint elliptic problems with a polynomial property in domains possessing cylindrical outlets to infinity”, J. Math. Sci. (N.Y.), 101:5 (2000), 3512–3522 | DOI | MR | Zbl
[51] S. A. Nazarov, B. A. Plamenevskiĭ, “On radiation conditions for selfadjoint elliptic problems”, Soviet Math. Dokl., 41:2 (1990), 274–277 | MR | Zbl
[52] S. A. Nazarov, B. A. Plamenevskii, “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Differentsialnye uravneniya. Spektralnaya teoriya. Rasprostranenie voln, Problemy matem. fiziki, 13, Izd-vo Leningr. un-ta, L., 1991, 192–244 | MR | Zbl
[53] S. A. Nazarov, “Elliptic boundary value problems with periodic coefficients in a cylinder”, Math. USSR-Izv., 18:1 (1982), 89–98 | DOI | MR | Zbl
[54] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russian Math. Surveys, 19:3 (1964), 53–157 | DOI | MR | Zbl
[55] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR | Zbl
[56] S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide”, Theoret. and Math. Phys., 167:2 (2011), 606–627 | DOI | DOI | MR | Zbl
[57] S. A. Nazarov, “The Mandelstam energy radiation conditions and the Umov–Poynting vector in elastic waveguides”, J. Math. Sci. (N.Y.), 195:5 (2013), 676–729 | DOI | MR | Zbl
[58] S. A. Nazarov, “Umov–Mandelshtam radiation conditions in elastic periodic waveguides”, Sb. Math., 205:7 (2014), 953–982 | DOI | DOI | MR | Zbl
[59] N. A. Umov, Uravneniya dvizheniya energii v telakh, Tip. Ulrikha i Shultse, Odessa, 1874, 58 pp.
[60] J. H. Poynting, “On the transfer of energy in the electromagnetic field”, Philos. Trans. R. Soc. Lond., 175 (1884), 343–361 | DOI | Zbl
[61] L. I. Mandelshtam, Lektsii po optike teorii otnositelnosti i kvantovoi mekhanike, Sb. trudov, v. 2, Izd-vo AN SSSR, M., 1947, 372 pp. | MR
[62] I. I. Vorovich, V. A. Babeshko, Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979, 320 pp. | MR | Zbl
[63] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002, 408 pp.
[64] S. A. Nazarov, “On the constants in the asymptotics of solutions of elliptic boundary-value problems with periodic coefficients in a cylinder”, Vestnik Leningr. Univ. Math., 18:3 (1985), 16–22 | MR | Zbl
[65] S. A. Nazarov, “The interface crack in anisotropic bodies. Stress singularities and invariant integrals”, J. Appl. Math. Mech., 62:3 (1998), 453–464 | DOI | MR
[66] S. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev spaces in mathematics, v. II, Int. Math. Ser. (N.Y.), 9, Springer, New York, 2008, 261–309 | DOI | MR | Zbl
[67] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966, xix+592 pp. | DOI | MR | MR | Zbl | Zbl
[68] S. A. Nazarov, “Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)”, Sb. Math., 191:7 (2000), 1075–1106 | DOI | DOI | MR | Zbl
[69] S. A. Nazarov, “The eigenfrequencies of a slightly curved isotropic strip clamped between absolutely rigid profiles”, J. Appl. Math. Mech., 78, no. 4, 374–383 | DOI | MR | Zbl
[70] S. A. Nazarov, “Discrete spectrum of cranked quantum and elastic waveguides”, Comput. Math. Math. Phys., 56:5 (2016), 864–880 | DOI | DOI | MR | Zbl
[71] S. A. Nazarov, “Opening of a gap in the continuous spectrum of a periodically perturbed waveguide”, Math. Notes, 87:5 (2010), 738–756 | DOI | DOI | MR | Zbl
[72] D. Borisov, K. Pankrashkin, “Quantum waveguides with small periodic perturbations: gaps and edges of Brillouin zones”, J. Phys. A, 46:23 (2013), 235203, 18 pp. | DOI | MR | Zbl
[73] S. A. Nazarov, “Asymptotic behavior of spectral gaps in a regularly perturbed periodic waveguide”, Vestnik St. Petersburg Univ. Math., 46:2 (2013), 89–97 | DOI | MR
[74] S. A. Nazarov, “Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide”, Funct. Anal. Appl., 47:3 (2013), 195–209 | DOI | DOI | MR | Zbl
[75] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 718–752 | DOI | MR | Zbl
[76] P. Exner, O. Post, “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54:1 (2005), 77–115 | DOI | MR | Zbl
[77] F. L. Bakharev, S. A. Nazarov, “Kriterii otsutstviya i nalichiya ogranichennykh reshenii na poroge nepreryvnogo spektra v ob'edinenii kvantovykh volnovodov”, Algebra i analiz (to appear)
[78] S. A. Nazarov, “A criterion for the existence of decaying solutions in the problem on a resonator with a cylindrical waveguide”, Funct. Anal. Appl., 40:2 (2006), 97–107 | DOI | DOI | MR | Zbl
[79] S. A. Nazarov, A. S. Slutskiĭ, “Arbitrary plane systems of anisotropic beams”, Proc. Steklov Inst. Math., 236 (2002), 222–249 | MR | Zbl
[80] S. A. Nazarov, A. S. Slutskii, “Asymptotic analysis of an arbitrary spatial system of thin rods”, Proceedings of the St. Petersburg Mathematical Society, v. X, Amer. Math. Soc. Transl. Ser. 2, 214, Amer. Math. Soc., Providence, RI, 2005, 59–107 | DOI | MR | Zbl
[81] S. A. Nazarov, A. S. Slutskij, “Asymptotics of natural oscillations of junctions of elastic rods with movable fragments”, J. Appl. Math. Mech., 82:3 (2018), 101–115 | DOI
[82] S. A. Nazarov, “The asymptotic behaviour of the scattering matrix in a neighbourhood of the endpoints of a spectral gap”, Sb. Math., 208:1 (2017), 103–156 | DOI | DOI | MR | Zbl
[83] B. A. Plamenevskiĭ, A. S. Poretskiĭ, O. V. Sarafanov, “Method for computing waveguide scattering matrices in the vicinity of thresholds”, St. Petersburg Math. J., 26:1 (2015), 91–116 | DOI | MR | Zbl
[84] B. A. Plamenevskii, A. S. Poretskii, O. V. Sarafanov, “On computation of waveguide scattering matrices for the Maxwell system”, Funct. Anal. Appl., 49:1 (2015), 77–80 | DOI | DOI | MR | Zbl