Geometric estimates of~solutions of~quasilinear elliptic inequalities
Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1056-1104

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $p>1$ and $\alpha$ are real numbers with $p-1 \leqslant \alpha \leqslant p$. Let $\Omega$ be a non-empty open subset of $\mathbb{R}^n$, $n \geqslant 2$. We consider the inequality $$ \operatorname{div} A (x, D u)+b (x) |D u|^\alpha\geqslant 0, $$ where $D=(\partial/\partial x_1, \partial/\partial x_2, \dots, \partial/\partial x_n)$ is the gradient operator, $A\colon \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ and $b\colon \Omega \to [0, \infty)$ are certain functions and $$ C_1|\xi|^p\leqslant\xi A(x, \xi),\quad |A (x, \xi)|\leqslant C_2|\xi|^{p-1},\qquad C_1, C_2=\mathrm{const}>0, \quad p>1, $$ for almost all $x \in \Omega$ and all $\xi \in \mathbb{R}^n$. We obtain estimates for solutions of this inequality using the geometry of $\Omega$. In particular, these estimates yield regularity conditions for boundary points.
Keywords: non-linear operators, elliptic inequalities, boundary regularity conditions.
@article{IM2_2020_84_6_a1,
     author = {A. A. Kon'kov},
     title = {Geometric estimates of~solutions of~quasilinear elliptic inequalities},
     journal = {Izvestiya. Mathematics },
     pages = {1056--1104},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a1/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - Geometric estimates of~solutions of~quasilinear elliptic inequalities
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 1056
EP  - 1104
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a1/
LA  - en
ID  - IM2_2020_84_6_a1
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T Geometric estimates of~solutions of~quasilinear elliptic inequalities
%J Izvestiya. Mathematics 
%D 2020
%P 1056-1104
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a1/
%G en
%F IM2_2020_84_6_a1
A. A. Kon'kov. Geometric estimates of~solutions of~quasilinear elliptic inequalities. Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1056-1104. http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a1/