Geometric estimates of~solutions of~quasilinear elliptic inequalities
Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1056-1104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $p>1$ and $\alpha$ are real numbers with $p-1 \leqslant \alpha \leqslant p$. Let $\Omega$ be a non-empty open subset of $\mathbb{R}^n$, $n \geqslant 2$. We consider the inequality $$ \operatorname{div} A (x, D u)+b (x) |D u|^\alpha\geqslant 0, $$ where $D=(\partial/\partial x_1, \partial/\partial x_2, \dots, \partial/\partial x_n)$ is the gradient operator, $A\colon \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ and $b\colon \Omega \to [0, \infty)$ are certain functions and $$ C_1|\xi|^p\leqslant\xi A(x, \xi),\quad |A (x, \xi)|\leqslant C_2|\xi|^{p-1},\qquad C_1, C_2=\mathrm{const}>0, \quad p>1, $$ for almost all $x \in \Omega$ and all $\xi \in \mathbb{R}^n$. We obtain estimates for solutions of this inequality using the geometry of $\Omega$. In particular, these estimates yield regularity conditions for boundary points.
Keywords: non-linear operators, elliptic inequalities, boundary regularity conditions.
@article{IM2_2020_84_6_a1,
     author = {A. A. Kon'kov},
     title = {Geometric estimates of~solutions of~quasilinear elliptic inequalities},
     journal = {Izvestiya. Mathematics },
     pages = {1056--1104},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a1/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - Geometric estimates of~solutions of~quasilinear elliptic inequalities
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 1056
EP  - 1104
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a1/
LA  - en
ID  - IM2_2020_84_6_a1
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T Geometric estimates of~solutions of~quasilinear elliptic inequalities
%J Izvestiya. Mathematics 
%D 2020
%P 1056-1104
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a1/
%G en
%F IM2_2020_84_6_a1
A. A. Kon'kov. Geometric estimates of~solutions of~quasilinear elliptic inequalities. Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1056-1104. http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a1/

[1] N. Wiener, “The Dirichlet problem”, J. Math. Phys., 3:3 (1924), 127–146 | DOI | Zbl

[2] N. Wiener, “Certain notions in potential theory”, J. Math. Phys., 3:1 (1924), 24–51 | DOI | Zbl

[3] J. Björn, “Boundedness and differentiability for nonlinear elliptic systems”, Trans. Amer. Math. Soc., 353:11 (2001), 4545–4565 | DOI | MR | Zbl

[4] R. Gariepy, W. P. Ziemer, “A regularity condition at the boundary for solutions of quasilinear elliptic equations”, Arch. Rational Mech. Anal., 67:1 (1977), 25–39 | DOI | MR | Zbl

[5] J. Malý, “Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular boundary points”, Comment. Math. Univ. Carolin., 37:1 (1996), 23–42 | MR | Zbl

[6] Yu. A. Alkhutov, V. N. Denisov, “Necessary and sufficient condition for the stabilization of the solution of a mixed problem for nondivergence parabolic equations to zero”, Trans. Moscow Math. Soc., 75 (2014), 233–258 | DOI | MR | Zbl

[7] Yu. A. Alkhutov, M. D. Surnachev, “Behavior of solutions of the Dirichlet problem for the $p(x)$-Laplacian at a boundary point”, St. Petersbg. Math. J., 31:2 (2020), 251–271 | DOI | MR | Zbl

[8] V. N. Denisov, “Necessary and sufficient conditions of stabilization of solutions of the first boundary-value problem for a parabolic equation”, J. Math. Sci. (N.Y.), 197:3 (2014), 303–324 | DOI | MR | Zbl

[9] V. A. Kondrat'ev, “Solvability of the first boundary-value problem for strongly elliptic equations”, Trans. Moscow Math. Soc., 16 (1967), 315–341 | MR | Zbl

[10] E. M. Landis, Second order equations of elliptic and parabolic type, Transl. Math. Monogr., 171, Amer. Math. Soc., Providence, RI, 1998, xii+203 pp. | MR | MR | Zbl | Zbl

[11] A. A. Kon'kov, “On comparison theorems for quasi-linear elliptic inequalities with a special account of the geometry of the domain”, Izv. Math., 78:4 (2014), 758–808 | DOI | DOI | MR | Zbl

[12] V. G. Mazya, “O nepreryvnosti v granichnoi tochke reshenii kvazilineinykh ellipticheskikh uravnenii”, Vestn. Leningr. un-ta, 1970, no. 13, 42–55 | MR | Zbl

[13] T. Kato, “Schrödinger operators with singular potentials”, Israel J. Math., 13 (1972), 135–148 | DOI | MR | Zbl

[14] A. A. Kon'kov, “Comparison theorems for elliptic inequalities with a non-linearity in the principal part”, J. Math. Anal. Appl., 325:2 (2007), 1013–1041 | DOI | MR | Zbl

[15] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | DOI | MR | MR | Zbl | Zbl

[16] J. Serrin, “Local behavior of solutions of quasi-linear equations”, Acta Math., 111 (1964), 247–302 | DOI | MR | Zbl

[17] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14:3 (1961), 415–426 | DOI | MR | Zbl