Complete description of the Lyapunov spectra of~continuous families of~linear differential systems with
Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1037-1055.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every positive integer $n$ and every metric space $M$ we consider the class $\widetilde{\mathcal{U}}^n(M)$ of all parametric families $\dot x = A(t, \mu)x$, where $x\in\mathbb{R}^n$, $t\geqslant 0$, $\mu\in M$, of linear differential systems whose coefficients are piecewise continuous and, generally speaking, unbounded on the time semi-axis for every fixed value of the parameter $\mu$ such that if a sequence $(\mu_k)$ converges to $\mu_0$ in the space of parameters, then the sequence $(A(\,{\cdot}\,,\mu_k))$\linebreak converges uniformly on the semi-axis to the matrix $A(\,{\cdot}\,,\mu_0)$. For the families in $\widetilde{\mathcal{U}}^n(M)$, we obtain a complete description of individual Lyapunov exponents and their spectra as functions of the parameter.
Keywords: linear differential system, Lyapunov exponents
Mots-clés : infinitesimal perturbations, Baire classes.
@article{IM2_2020_84_6_a0,
     author = {V. V. Bykov},
     title = {Complete description of the {Lyapunov} spectra of~continuous families of~linear differential systems with},
     journal = {Izvestiya. Mathematics },
     pages = {1037--1055},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a0/}
}
TY  - JOUR
AU  - V. V. Bykov
TI  - Complete description of the Lyapunov spectra of~continuous families of~linear differential systems with
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 1037
EP  - 1055
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a0/
LA  - en
ID  - IM2_2020_84_6_a0
ER  - 
%0 Journal Article
%A V. V. Bykov
%T Complete description of the Lyapunov spectra of~continuous families of~linear differential systems with
%J Izvestiya. Mathematics 
%D 2020
%P 1037-1055
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a0/
%G en
%F IM2_2020_84_6_a0
V. V. Bykov. Complete description of the Lyapunov spectra of~continuous families of~linear differential systems with. Izvestiya. Mathematics , Tome 84 (2020) no. 6, pp. 1037-1055. http://geodesic.mathdoc.fr/item/IM2_2020_84_6_a0/

[1] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, NJ, 1960, viii+523 pp. | MR | MR | Zbl | Zbl

[2] V. M. Millionschikov, “Formuly dlya pokazatelei Lyapunova lineinykh sistem differentsialnykh uravnenii”, Tr. In-ta prikl. matem. im. I. N. Vekua, 22, Tbilisi, 1987, 150–178 | MR

[3] A. M. Lyapunov, The general problem of the stability of motion, Taylor Francis Group, London, 1992, x+270 pp. | MR | MR | Zbl | Zbl

[4] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR | Zbl

[5] V. V. Bykov, “Some properties of majorants of Lyapunov exponents for systems with unbounded coefficients”, Differ. Equ., 50:10 (2014), 1279–1289 | DOI | DOI | MR | Zbl

[6] O. Perron, “Die Ordnungszahlen linearer Differentialgleichungssysteme”, Math. Z., 31:1 (1930), 748–766 | DOI | MR | Zbl

[7] N. A. Izobov, Vvedenie v teoriyu pokazatelei Lyapunova, BGU, Minsk, 2006, 319 pp.

[8] V. M. Millionshchikov, “Baire function classes and Lyapunov indices. I”, Differ. Equ., 16 (1981), 902–907 | MR | Zbl

[9] V. M. Millionshchikov, “Lyapunov exponents as functions of a parameter”, Math. USSR-Sb., 65:2 (1990), 369–384 | DOI | MR | Zbl

[10] F. Hausdorff, Grundzüge der Mengenlehre, Veit Comp., Leipzig, 1914, viii+476 pp. | MR | Zbl

[11] M. I. Rakhimberdiev, “Baire class of the Lyapunov indices”, Math. Notes, 31:6 (1982), 467–470 | DOI | MR | Zbl

[12] V. M. Millionshchikov, “Lyapunov exponents of a family of endomorphisms of a metrizable vector bundle”, Math. Notes, 38:1 (1985), 564–574 | DOI | MR | Zbl

[13] V. M. Millionshchikov, “Normal bases of a family of endomorphisms of a metrized vector bundle”, Math. Notes, 38:5 (1985), 889–898 | DOI | MR | Zbl

[14] V. M. Millionshchikov, “Formulas for the Lyapunov exponents of a family of endomorphisms of a metric vector bundle”, Math. Notes, 39:1 (1986), 17–30 | DOI | MR | Zbl

[15] M. V. Karpuk, “Pokazateli Lyapunova semeistv morfizmov obobschennykh rassloenii Millionschikova kak funktsii na baze rassloeniya”, Tr. In-ta matem. NAN Belarusi, 24:2 (2016), 55–71 | MR

[16] M. V. Karpuk, “Lyapunov exponents of families of morphisms of metrized vector bundles as functions on the base of the bundle”, Differ. Equ., 50:10 (2014), 1322–1328 | DOI | DOI | MR | Zbl

[17] V. V. Bykov, “Functions determined by the Lyapunov exponents of families of linear differential systems continuously depending on the parameter uniformly on the half-line”, Differ. Equ., 53:12 (2017), 1529–1542 | DOI | DOI | MR | Zbl

[18] E. A. Barabanov, V. V. Bykov, M. V. Karpuk, “Complete description of the Lyapunov spectra of families of linear differential systems whose dependence on the parameter is continuous uniformly on the time semiaxis”, Differ. Equ., 54:12 (2018), 1535–1544 | DOI | DOI | MR | Zbl

[19] V. V. Bykov, E. E. Salov, “The Baire class of minorants of Lyapunov's exponents”, Moscow Univ. Math. Bull., 58:1 (2003), 36–43 | MR | Zbl

[20] W. Stepanoff, “Sur les suites des fonctions continues”, Fund. Math., 11 (1928), 264–274 | DOI | Zbl

[21] Ju. L. Daleckiĭ, M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | DOI | MR | MR | Zbl | Zbl

[22] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemytskii, Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, M., 1966, 576 pp. | MR | Zbl

[23] E. A. Barabanov, “Generalization of the Bylov reducibility theorem and some applications”, Differ. Equ., 43:12 (2007), 1632–1637 | DOI | MR | Zbl

[24] V. I. Zalygina, “On Lyapunov equivalence of linear differential systems with unbounded coefficients”, Differ. Equ., 50:10 (2014), 1314–1321 | DOI | MR | Zbl

[25] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | MR | Zbl | Zbl

[26] V. A. Zorich, Mathematical analysis, v. II, Universitext, 2nd ed., Springer-Verlag, Berlin, 2004, xvi+681 pp. | MR | Zbl

[27] K. Kuratowski, Topology, v. I, New ed., rev. and augm., Academic Press, New York–London; Państwowe Wydawnictwo Naukowe, 1966, xx+560 pp. | MR | MR | Zbl | Zbl