On the standard conjecture for a~$3$-dimensional variety fibred by curves with a~non-injective Kodaira--Spencer map
Izvestiya. Mathematics , Tome 84 (2020) no. 5, pp. 1016-1035.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Grothendieck standard conjecture of Lefschetz type holds for a complex projective 3-dimensional variety fibred by curves (possibly with degeneracies) over a smooth projective surface provided that the endomorphism ring of the Jacobian variety of some smooth fibre coincides with the ring of integers and the corresponding Kodaira–Spencer map has rank $1$ on some non-empty open subset of the surface. When the generic fibre of the structure morphism is of genus $2$, the condition on the endomorphisms of the Jacobian may be omitted.
Keywords: Grothendieck standard conjecture of Lefschetz type, Kodaira–Spencer map, Jacobian variety.
@article{IM2_2020_84_5_a8,
     author = {S. G. Tankeev},
     title = {On the standard conjecture for a~$3$-dimensional variety fibred by curves with a~non-injective {Kodaira--Spencer} map},
     journal = {Izvestiya. Mathematics },
     pages = {1016--1035},
     publisher = {mathdoc},
     volume = {84},
     number = {5},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a8/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the standard conjecture for a~$3$-dimensional variety fibred by curves with a~non-injective Kodaira--Spencer map
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 1016
EP  - 1035
VL  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a8/
LA  - en
ID  - IM2_2020_84_5_a8
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the standard conjecture for a~$3$-dimensional variety fibred by curves with a~non-injective Kodaira--Spencer map
%J Izvestiya. Mathematics 
%D 2020
%P 1016-1035
%V 84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a8/
%G en
%F IM2_2020_84_5_a8
S. G. Tankeev. On the standard conjecture for a~$3$-dimensional variety fibred by curves with a~non-injective Kodaira--Spencer map. Izvestiya. Mathematics , Tome 84 (2020) no. 5, pp. 1016-1035. http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a8/

[1] A. Grothendieck, “Standard conjectures on algebraic cycles”, Algebraic geometry, Internat. colloq. (Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, 193–199 | MR | Zbl

[2] S. L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 359–386 | MR | Zbl

[3] S. G. Tankeev, “On the standard conjecture for complex Abelian schemes over smooth projective curves”, Izv. Math., 67:3 (2003), 597–635 | DOI | DOI | MR | Zbl

[4] S. G. Tankeev, “On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension”, Izv. Math., 69:1 (2005), 143–162 | DOI | DOI | MR | Zbl

[5] S. G. Tankeev, “Monoidal transformations and conjectures on algebraic cycles”, Izv. Math., 71:3 (2007), 629–655 | DOI | DOI | MR | Zbl

[6] D. I. Lieberman, “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374 | DOI | MR | Zbl

[7] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. Math., 75:5 (2011), 1047–1062 | DOI | DOI | MR | Zbl

[8] D. Arapura, “Motivation for Hodge cycles”, Adv. Math., 207:2 (2006), 762–781 | DOI | MR | Zbl

[9] F. Charles, E. Markman, “The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of $K3$ surfaces”, Compos. Math., 149:3 (2013), 481–494 | DOI | MR | Zbl

[10] O. V. Nikol'skaya, “On algebraic cycles on a fibre product of families of $K3$-surfaces”, Izv. Math., 77:1 (2013), 143–162 | DOI | DOI | MR | Zbl

[11] O. V. Nikolskaya, “Ob algebraicheskikh tsiklakh na rassloennykh proizvedeniyakh neizotrivialnykh semeistv regulyarnykh poverkhnostei s geometricheskim rodom 1”, Model. i analiz inform. sistem, 23:4 (2016), 440–465 | DOI | MR

[12] S. G. Tankeev, “On the standard conjecture and the existence of a Chow–Lefschetz decomposition for complex projective varieties”, Izv. Math., 79:1 (2015), 177–207 | DOI | DOI | MR | Zbl

[13] S. G. Tankeev, “On an inductive approach to the standard conjecture for a fibred complex variety with strong semistable degeneracies”, Izv. Math., 81:6 (2017), 1253–1285 | DOI | DOI | MR | Zbl

[14] S. G. Tankeev, “On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci”, Izv. Math., 83:3 (2019), 613–653 | DOI | DOI | MR | Zbl

[15] A. Grothendieck, “Un théorème sur les homomorphismes de schémas Abéliens”, Invent. Math., 2 (1966), 59–78 | DOI | MR | Zbl

[16] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40:1 (1971), 5–57 | DOI | MR | Zbl | Zbl

[17] K. Kodaira, D. C. Spencer, “On deformations of complex analytic structures. I”, Ann. of Math. (2), 67:2 (1958), 328–401 | DOI | MR | Zbl

[18] E. M. Friedlander, B. Mazur, Filtrations on the homology of algebraic varieties, Mem. Amer. Math. Soc., 110, no. 529, Amer. Math. Soc., Providence, RI, 1994, x+110 pp. | DOI | MR | Zbl

[19] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings, v. 1, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973, viii+209 pp. | DOI | MR | Zbl

[20] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. of Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl

[21] C. H. Clemens, “Degeneration of Kähler manifolds”, Duke Math. J., 44:2 (1977), 215–290 | DOI | MR | Zbl

[22] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds”, Izv. Math., 74:1 (2010), 167–187 | DOI | DOI | MR | Zbl

[23] R. Godement, Topologie algébrique et théorie des faisceaux, Actualit'es Sci. Ind., 1252, Publ. Math. Univ. Strasbourg, No. 13, Hermann, Paris, 1958, viii+283 pp. | MR | MR | Zbl | Zbl

[24] J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, NJ, 1980, xiii+323 pp. | MR | MR | Zbl | Zbl

[25] R. O. Wells, Jr., Differential analysis on complex manifolds, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973, x+252 pp. | MR | MR | Zbl

[26] N. Bourbaki, Éléments de mathématique. Algèbre, Ch. 10. Algèbre homologique, Masson, Paris, 1980, vii+216 pp. | MR | MR | Zbl | Zbl

[27] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44 (1974), 5–77 | DOI | MR | Zbl

[28] W. Schmid, “Variation of Hodge structure: the singularities of the period mapping”, Invent. Math., 22:3-4 (1973), 211–319 | DOI | MR | Zbl

[29] B. B. Gordon, “A survey of the Hodge conjecture for Abelian varieties”, Appendix in:: J. D. Lewis, A survey of the Hodge conjecture, CRM Monogr. Ser., 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1999, 297–356 | MR | Zbl

[30] G. A. Mustafin, “Families of algebraic varieties and invariant cycles”, Math. USSR-Izv., 27:2 (1986), 251–278 | DOI | MR | Zbl

[31] T. E. Venkata Balaji, An introduction to families, deformations and moduli, Universitätsverlag Göttingen, Göttingen, 2010, xxvi+208 pp. | MR | Zbl

[32] A. N. Paršin, “Modular correspondences, heights and isogenies of Abelian varieties”, Proc. Steklov Inst. Math., 132 (1973), 243–270 | MR | Zbl

[33] K. Kodaira, Complex manifolds and deformation of complex structures, Transl. from the Japan., Grundlehren Math. Wiss., 283, Springer-Verlag, New York, 1986, x+465 pp. | DOI | MR | Zbl

[34] Yu. G. Zarhin, “Weights of simple Lie algebras in the cohomology of algebraic varieties”, Math. USSR-Izv., 24:2 (1985), 245–281 | DOI | MR | Zbl

[35] E. Kani, “Jacobians isomorphic to a product of two elliptic curves and ternary quadratic forms”, J. Number Theory, 139 (2014), 138–174 | DOI | MR | Zbl