Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_5_a7, author = {S. V. Pchelintsev}, title = {Isotopes of~alternative algebras of~characteristic different from~$3$}, journal = {Izvestiya. Mathematics }, pages = {1002--1015}, publisher = {mathdoc}, volume = {84}, number = {5}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a7/} }
S. V. Pchelintsev. Isotopes of~alternative algebras of~characteristic different from~$3$. Izvestiya. Mathematics , Tome 84 (2020) no. 5, pp. 1002-1015. http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a7/
[1] A. A. Albert, “Non-associative algebras. I. Fundamental concepts and isotopy”, Ann. of Math. (2), 43:4 (1942), 685–707 | DOI | MR | Zbl
[2] R. D. Schafer, “Alternative algebras over an arbitrary field”, Bull. Amer. Math. Soc., 49:8 (1943), 549–555 | DOI | MR | Zbl
[3] K. McCrimmon, “Homotopes of alternative algebras”, Math. Ann., 191:4 (1971), 253–262 | DOI | MR | Zbl
[4] M. Babikov, “Isotopy and identities in alternative algebras”, Proc. Amer. Math. Soc., 125:6 (1997), 1571–1575 | DOI | MR | Zbl
[5] S. V. Pchelintsev, “Isotopes of prime $(-1,1)$- and Jordan algebras”, Algebra and Logic, 49:3 (2010), 262–288 | DOI | MR | Zbl
[6] V. I. Glizburg, S. V. Pchelintsev, “Isotopes of simple algebras of arbitrary dimension”, Asian-Eur. J. Math., 2020, 2050108, 19 pp. | DOI
[7] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., Providence, RI, 1968, x+453 pp. | MR | Zbl
[8] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, A. I. Shirshov, Rings that are nearly associative, Pure Appl. Math., 104, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1982, xi+371 pp. | MR | MR | Zbl | Zbl
[9] S. V. Pchelintsev, “Prime alternative algebras that are nearly commutative”, Izv. Math., 68:1 (2004), 181–204 | DOI | DOI | MR | Zbl
[10] S. V. Pchelintsev, “Degenerate alternative algebras”, Siberian Math. J., 55:2 (2014), 323–335 | DOI | MR | Zbl
[11] S. V. Pchelintsev, “Isotopes of the alternative monster and the Skosyrsky algebra”, Siberian Math. J., 57:4 (2016), 666–678 | DOI | DOI | MR | Zbl
[12] A. A. Krylov, S. V. Pchelintsev, “The isotopically simple algebras with a nil-basis”, Comm. Algebra, 48:4 (2020), 1697–1712 | DOI | MR | Zbl
[13] R. H. Bruck, “Some results in the theory of linear non-associative algebras”, Trans. Amer. Math. Soc., 56 (1944), 141–199 | DOI | MR | Zbl
[14] M. Zorn, “Theorie der alternativen Ringe”, Abh. Math. Sem. Univ. Hamburg, 8:1 (1931), 123–147 | DOI | MR | Zbl
[15] R. D. Schafer, “The Wedderburn principal theorem for alternative algebras”, Bull. Amer. Math. Soc., 55:6 (1949), 604–614 | DOI | MR | Zbl
[16] R. D. Schafer, An introduction to nonassociative algebras, Pure Appl. Math., 22, New York–London, Academic Press, 1966, x+166 pp. | MR | Zbl
[17] A. A. Albert, “The structure of right alternative algebras”, Ann. of Math. (2), 59:3 (1954), 408–417 | DOI | MR | Zbl
[18] I. M. Miheev, “Simple right alternative rings”, Algebra and Logic, 16:6 (1977), 456–476 | DOI | MR | Zbl
[19] V. G. Skosyrskii, “Right alternative algebras”, Algebra and Logic, 23:2 (1984), 131–136 | DOI | MR | Zbl
[20] S. V. Pchelintsev, “Commutator identities of the homotopes of $(-1,1)$-algebras”, Siberian Math. J., 54:2 (2013), 325–340 | DOI | MR | Zbl