Isotopes of~alternative algebras of~characteristic different from~$3$
Izvestiya. Mathematics , Tome 84 (2020) no. 5, pp. 1002-1015.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study homotopes of alternative algebras over an algebraically closed field of characteristic different from $3$. We prove an analogue of Albert's theorem on isotopes of associative algebras: in the class of finite-dimensional unital alternative algebras every isotopy is an isomorphism. We also prove that every $(a,b)$-homotope of a unital alternative algebra preserves the identities of the original algebra. We also obtain results on the structure of isotopes of various simple algebras, in particular, Cayley–Dixon algebras.
Keywords: isotope, identity, Cayley–Dixon algebra, alternative algebra.
Mots-clés : homotope
@article{IM2_2020_84_5_a7,
     author = {S. V. Pchelintsev},
     title = {Isotopes of~alternative algebras of~characteristic different from~$3$},
     journal = {Izvestiya. Mathematics },
     pages = {1002--1015},
     publisher = {mathdoc},
     volume = {84},
     number = {5},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a7/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - Isotopes of~alternative algebras of~characteristic different from~$3$
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 1002
EP  - 1015
VL  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a7/
LA  - en
ID  - IM2_2020_84_5_a7
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T Isotopes of~alternative algebras of~characteristic different from~$3$
%J Izvestiya. Mathematics 
%D 2020
%P 1002-1015
%V 84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a7/
%G en
%F IM2_2020_84_5_a7
S. V. Pchelintsev. Isotopes of~alternative algebras of~characteristic different from~$3$. Izvestiya. Mathematics , Tome 84 (2020) no. 5, pp. 1002-1015. http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a7/

[1] A. A. Albert, “Non-associative algebras. I. Fundamental concepts and isotopy”, Ann. of Math. (2), 43:4 (1942), 685–707 | DOI | MR | Zbl

[2] R. D. Schafer, “Alternative algebras over an arbitrary field”, Bull. Amer. Math. Soc., 49:8 (1943), 549–555 | DOI | MR | Zbl

[3] K. McCrimmon, “Homotopes of alternative algebras”, Math. Ann., 191:4 (1971), 253–262 | DOI | MR | Zbl

[4] M. Babikov, “Isotopy and identities in alternative algebras”, Proc. Amer. Math. Soc., 125:6 (1997), 1571–1575 | DOI | MR | Zbl

[5] S. V. Pchelintsev, “Isotopes of prime $(-1,1)$- and Jordan algebras”, Algebra and Logic, 49:3 (2010), 262–288 | DOI | MR | Zbl

[6] V. I. Glizburg, S. V. Pchelintsev, “Isotopes of simple algebras of arbitrary dimension”, Asian-Eur. J. Math., 2020, 2050108, 19 pp. | DOI

[7] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., Providence, RI, 1968, x+453 pp. | MR | Zbl

[8] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, A. I. Shirshov, Rings that are nearly associative, Pure Appl. Math., 104, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1982, xi+371 pp. | MR | MR | Zbl | Zbl

[9] S. V. Pchelintsev, “Prime alternative algebras that are nearly commutative”, Izv. Math., 68:1 (2004), 181–204 | DOI | DOI | MR | Zbl

[10] S. V. Pchelintsev, “Degenerate alternative algebras”, Siberian Math. J., 55:2 (2014), 323–335 | DOI | MR | Zbl

[11] S. V. Pchelintsev, “Isotopes of the alternative monster and the Skosyrsky algebra”, Siberian Math. J., 57:4 (2016), 666–678 | DOI | DOI | MR | Zbl

[12] A. A. Krylov, S. V. Pchelintsev, “The isotopically simple algebras with a nil-basis”, Comm. Algebra, 48:4 (2020), 1697–1712 | DOI | MR | Zbl

[13] R. H. Bruck, “Some results in the theory of linear non-associative algebras”, Trans. Amer. Math. Soc., 56 (1944), 141–199 | DOI | MR | Zbl

[14] M. Zorn, “Theorie der alternativen Ringe”, Abh. Math. Sem. Univ. Hamburg, 8:1 (1931), 123–147 | DOI | MR | Zbl

[15] R. D. Schafer, “The Wedderburn principal theorem for alternative algebras”, Bull. Amer. Math. Soc., 55:6 (1949), 604–614 | DOI | MR | Zbl

[16] R. D. Schafer, An introduction to nonassociative algebras, Pure Appl. Math., 22, New York–London, Academic Press, 1966, x+166 pp. | MR | Zbl

[17] A. A. Albert, “The structure of right alternative algebras”, Ann. of Math. (2), 59:3 (1954), 408–417 | DOI | MR | Zbl

[18] I. M. Miheev, “Simple right alternative rings”, Algebra and Logic, 16:6 (1977), 456–476 | DOI | MR | Zbl

[19] V. G. Skosyrskii, “Right alternative algebras”, Algebra and Logic, 23:2 (1984), 131–136 | DOI | MR | Zbl

[20] S. V. Pchelintsev, “Commutator identities of the homotopes of $(-1,1)$-algebras”, Siberian Math. J., 54:2 (2013), 325–340 | DOI | MR | Zbl