Distribution of~prime numbers and the discrete spectrum of~the Laplace operator
Izvestiya. Mathematics , Tome 84 (2020) no. 5, pp. 960-977.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a class of explicit formulae each of which gives an expression for the remainder term in the asymptotic equation for the Chebyshev function in terms of the spectrum of the Laplace operator on the fundamental domain of the modular group.
Keywords: prime numbers, Chebyshev psi-function, spectrum of the Laplace operator, modular group.
@article{IM2_2020_84_5_a5,
     author = {D. A. Popov},
     title = {Distribution of~prime numbers and the discrete spectrum of~the {Laplace} operator},
     journal = {Izvestiya. Mathematics },
     pages = {960--977},
     publisher = {mathdoc},
     volume = {84},
     number = {5},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a5/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - Distribution of~prime numbers and the discrete spectrum of~the Laplace operator
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 960
EP  - 977
VL  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a5/
LA  - en
ID  - IM2_2020_84_5_a5
ER  - 
%0 Journal Article
%A D. A. Popov
%T Distribution of~prime numbers and the discrete spectrum of~the Laplace operator
%J Izvestiya. Mathematics 
%D 2020
%P 960-977
%V 84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a5/
%G en
%F IM2_2020_84_5_a5
D. A. Popov. Distribution of~prime numbers and the discrete spectrum of~the Laplace operator. Izvestiya. Mathematics , Tome 84 (2020) no. 5, pp. 960-977. http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a5/

[1] D. A. Hejhal, The Selberg trace formula for $\operatorname{PSL}(2,\mathbb{R})$, v. 2, Lecture Notes in Math., 1001, Springer-Verlag, Berlin, 1983, viii+806 pp. | DOI | MR | Zbl

[2] A. B. Venkov, “Spectral theory of automorphic functions, the Selberg zeta-function, and some problems of analytic number theory and mathematical physics”, Russian Math. Surveys, 34:3 (1979), 79–153 | DOI | MR | Zbl

[3] A. B. Venkov, “Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace–Beltrami operator on the fundamental domain of the modular group $PSL(2,\mathbf Z)$”, Math. USSR-Izv., 12:3 (1978), 448–462 | DOI | Zbl

[4] P. Sarnak, “Arithmetic quantum chaos”, The Shur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., 8, Bar-Ilan Univ., Ramat-Gan, 1995, 183–236 | MR | Zbl

[5] D. A. Popov, “The discrete spectrum of the Laplace operator on the fundamental domain of the modular group and the Chebyshev psi-function”, Izv. Math., 83:5 (2019), 1066–1079 | DOI | DOI | MR | Zbl

[6] A. A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993, xiv+222 pp. | DOI | MR | MR | Zbl | Zbl

[7] D. A. Popov, “Relationship between the discrete and resonance spectrum for the Laplace operator on a noncompact hyperbolic Riemann surface”, Funct. Anal. Appl., 53:3 (2019), 205–219 | DOI | DOI | MR | Zbl

[8] Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, eds. M. Abramowitz, I. A. Stegun, Superintendent of Documents, U.S. Government Printing Office, Washington, DC, 1964, xiv+1046 pp. | MR | MR | Zbl | Zbl

[9] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007, xlviii+1171 pp. | MR | Zbl

[10] K. Soundararajan, M. P. Young, “The prime geodesic theorem”, J. Reine Angew. Math., 2013:676 (2013), 105–120 | DOI | MR | Zbl