Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_5_a3, author = {M. A. Karapetyants}, title = {Subdivision schemes on the dyadic half-line}, journal = {Izvestiya. Mathematics }, pages = {910--929}, publisher = {mathdoc}, volume = {84}, number = {5}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a3/} }
M. A. Karapetyants. Subdivision schemes on the dyadic half-line. Izvestiya. Mathematics , Tome 84 (2020) no. 5, pp. 910-929. http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a3/
[1] B. I. Golubov, Elementy dvoichnogo analiza, 2-e izd., LKI, M., 2007, 208 pp.
[2] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 pp. | DOI | MR | MR | Zbl | Zbl
[3] V. Yu. Protasov, “Fractal curves and wavelets”, Izv. Math., 70:5 (2006), 975–1013 | DOI | DOI | MR | Zbl
[4] G. de Rham, “Sur les courbes limités de polygones obtenus par trisection”, Enseign. Math. (2), 5 (1959), 29–43 | MR | Zbl
[5] G. M. Chaikin, “An algorithm for high-speed curve generation”, Comput. Graphics and Image Processing, 3:4 (1974), 346–349 | DOI
[6] G. Deslauriers, S. Dubuc, “Symmetric iterative interpolation processes”, Constr. Approx., 5:1 (1989), 49–68 | DOI | MR | Zbl
[7] A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991, vi+186 pp. | DOI | MR | Zbl
[8] N. Dyn, “Linear and nonlinear subdivision schemes in geometric modeling”, Foundations of computational mathematics (Hong Kong, 2008), London Math. Soc. Lecture Note Ser., 363, Cambridge Univ. Press, Cambridge, 2009, 68–92 | MR | Zbl
[9] N. Dyn, D. Levin, J. A. Gregory, “A butterfly subdivision scheme for surface interpolation with tension control”, ACM Trans. Graph., 9:2 (1990), 160–169 | DOI | Zbl
[10] M. Marinov, N. Dyn, D. Levin, “Geometrically controlled 4-point interpolatory schemes”, Advances in multiresolution for geometric modelling, Math. Vis., Springer, Berlin, 2005, 301–315 | DOI | MR | Zbl
[11] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Wavelet theory, Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | MR | MR | Zbl | Zbl
[12] D. Colella, C. Heil, “Characterizations of scaling functions: continuous solutions”, SIAM J. Matrix Anal. Appl., 15:2 (1994), 496–518 | DOI | MR | Zbl
[13] I. Daubechies, J. C. Lagarias, “Two-scale difference equations. I. Existence and global regularity of solutions”, SIAM. J. Math. Anal., 22:5 (1991), 1388–1410 | DOI | MR | Zbl
[14] E. A. Rodionov, Yu. A. Farkov, “Estimates of the smoothness of dyadic orthogonal wavelets of Daubechies type”, Math. Notes, 86:3 (2009), 407–421 | DOI | DOI | MR | Zbl
[15] G.-C. Rota, W. G. Strang, “A note on the joint spectral radius”, Nederl. Akad. Wetensch. Proc. Ser. A, 63, Indag. Math. 22 (1960), 379–381 | DOI | MR | Zbl
[16] N. Dyn, D. Levin, “Subdivision schemes in geometric modelling”, Acta Numer., 11 (2002), 73–144 | DOI | MR | Zbl
[17] A. A. Melkman, “Subdivision schemes with non-negative masks converge always – unless they obviously cannot?”, Ann. Numer. Math., 4:1-4 (1997), 451–460 | MR | Zbl
[18] V. Yu. Protasov, “Spectral factorization of 2-block Toeplitz matrices and refinement equations”, St. Petersburg Math. J., 18:4 (2007), 607–646 | DOI | MR | Zbl