Uniqueness theorems for one-dimensional and double Franklin series
Izvestiya. Mathematics , Tome 84 (2020) no. 5, pp. 829-844.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains two main results. First we describe one-dimensional Franklin series converging everywhere except possibly on a finite set to an everywhere-finite integrable function. Second we establish a class of subsets of $[0, 1]^2$ with the following property. If a double Franklin series converges everywhere except on this set to an everywhere-finite integrable function, then it is the Fourier–Franklin series of this function. In particular, all countable sets are in this class.
Keywords: uniqueness theorem, $U$-set, Franklin system, double series.
Mots-clés : Vallée–Poussin set
@article{IM2_2020_84_5_a0,
     author = {G. G. Gevorkyan},
     title = {Uniqueness theorems for one-dimensional and double {Franklin} series},
     journal = {Izvestiya. Mathematics },
     pages = {829--844},
     publisher = {mathdoc},
     volume = {84},
     number = {5},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a0/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - Uniqueness theorems for one-dimensional and double Franklin series
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 829
EP  - 844
VL  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a0/
LA  - en
ID  - IM2_2020_84_5_a0
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T Uniqueness theorems for one-dimensional and double Franklin series
%J Izvestiya. Mathematics 
%D 2020
%P 829-844
%V 84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a0/
%G en
%F IM2_2020_84_5_a0
G. G. Gevorkyan. Uniqueness theorems for one-dimensional and double Franklin series. Izvestiya. Mathematics , Tome 84 (2020) no. 5, pp. 829-844. http://geodesic.mathdoc.fr/item/IM2_2020_84_5_a0/

[1] G. Cantor, “Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen”, Math. Ann., 5:1 (1872), 123–132 | DOI | MR | Zbl

[2] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl

[3] L. D. Gogoladze, “On the problem of reconstructing the coefficients of convergent multiple function series”, Izv. Math., 72:2 (2008), 283–290 | DOI | DOI | MR | Zbl

[4] Ch. J. de la Vallée Poussin, “Sur l'unicité du développement trigonométrique”, Bull. Acad. Roy. de Belg., 1912 (1912), 702–718 | Zbl

[5] A. A. Talalyan, “The representation of measurable functions by series”, Russian Math. Surveys, 15:5 (1960), 75–136 | DOI | MR | Zbl

[6] P. L. Ul'yanov, “Solved and unsolved problems in the theory of trigonometric and orthogonal series”, Russian Math. Surveys, 19:1 (1964), 1–62 | DOI | MR | Zbl

[7] G. Kozma, A. Olevski\v{i}, Cantor uniqueness and multiplicity along subsequences, 2018, arXiv: 1804.06902v1

[8] V. Ya. Kozlov, “O polnykh sistemakh ortogonalnykh funktsii”, Matem. sb., 26(68):3 (1950), 351–364 | MR | Zbl

[9] N. K. Bari, “Subsequences of the partial sums of a trigonometric series which are everywhere convergent to zero”, Amer. Math. Soc. Transl. Ser. 2, 43, Amer. Math. Soc., Providence, RI, 1964, 31–50 | DOI | MR | Zbl

[10] F. G. Arutyunyan, “O edinstvennosti ryadov po sisteme Khaara”, Dokl. AN Arm. SSR, 38:3 (1964), 129–134 | MR | Zbl

[11] M. B. Petrovskaya, “O nul-ryadakh po sisteme Khaara i mnozhestvakh edinstvennosti”, Izv. AN SSSR. Ser. matem., 28:4 (1964), 773–798 | MR | Zbl

[12] V. A. Skvortsov, “Teorema tipa Kantora dlya sistemy Khaara”, Vestn. Mosk. un-ta. Ser. 1 Matem. Mekh., 1964, no. 5, 3–6 | MR | Zbl

[13] F. G. Arutyunyan, A. A. Talalyan, “O edinstvennosti ryadov po sistemam Khaara i Uolsha”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1391–1408 | MR | Zbl

[14] M. G. Plotnikov, “$\lambda$-convergence of multiple Walsh–Paley series and sets of uniqueness”, Math. Notes, 102:2 (2017), 268–276 | DOI | DOI | MR | Zbl

[15] M. G. Plotnikov, Yu. A. Plotnikova, “Decomposition of dyadic measures and unions of closed $\mathscr{U}$-sets for series in a Haar system”, Sb. Math., 207:3 (2016), 444–457 | DOI | DOI | MR | Zbl

[16] G. G. Gevorkyan, K. A. Navasardyan, “Uniqueness theorems for generalized Haar systems”, Math. Notes, 104:1 (2018), 10–21 | DOI | DOI | MR | Zbl

[17] G. G. Gevorkyan, K. A. Navasardyan, “Uniqueness theorems for series by Vilenkin system”, J. Contemp. Math. Anal., 53:2 (2018), 88–99 | DOI | MR | Zbl

[18] G. G. Gevorkyan, “Uniqueness theorems for Franklin series converging to integrable functions”, Sb. Math., 209:6 (2018), 802–822 | DOI | DOI | MR | Zbl

[19] Z. Ciesielski, “Properties of the orthonormal Franklin system. II”, Studia Math., 27 (1966), 289–323 | DOI | MR | Zbl

[20] G. G. Gevorkyan, “O ryadakh po sisteme Franklina”, Anal. Math., 16:2 (1990), 87–114 | DOI | MR | Zbl

[21] G. G. Gevorkyan, “Uniqueness theorems for Franklin series”, Proc. Steklov Inst. Math., 303 (2018), 58–77 | DOI | DOI | MR | Zbl

[22] Ph. Franklin, “A set of continuous orthogonal functions”, Math. Ann., 100:1 (1928), 522–529 | DOI | MR | Zbl

[23] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[24] Z. Ciesielski, “Properties of the orthonormal Franklin system”, Studia Math., 23 (1963), 141–157 | DOI | MR | Zbl

[25] L. D. Gogoladze, “Boundedness of convergent mean multiple functional series”, Math. Notes, 34:6 (1983), 917–923 | DOI | MR | Zbl

[26] Sh. T. Tetunashvili, “On some multiple function series and the solution of the uniqueness problem for Pringsheim convergence of multiple trigonometric series”, Math. USSR-Sb., 73:2 (1992), 517–534 | DOI | MR | Zbl

[27] V. G. Chelidze, Nekotorye metody summirovaniya dvoinykh ryadov i dvoinykh integralov, Izd-vo Tbilisskogo un-ta, Tbilisi, 1977, 399 pp. | MR | Zbl