Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_4_a6, author = {I. A. Panin}, title = {Proof of~the {Grothendieck--Serre} conjecture on principal bundles over regular local rings containing a~field}, journal = {Izvestiya. Mathematics }, pages = {780--795}, publisher = {mathdoc}, volume = {84}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a6/} }
TY - JOUR AU - I. A. Panin TI - Proof of~the Grothendieck--Serre conjecture on principal bundles over regular local rings containing a~field JO - Izvestiya. Mathematics PY - 2020 SP - 780 EP - 795 VL - 84 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a6/ LA - en ID - IM2_2020_84_4_a6 ER -
I. A. Panin. Proof of~the Grothendieck--Serre conjecture on principal bundles over regular local rings containing a~field. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 780-795. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a6/
[1] R. Fedorov, I. Panin, “A proof of the Grothendieck–Serre conjecture on principal bundles over regular local ring containing infinite fields”, Publ. Math. Inst. Hautes Études Sci., 122 (2015), 169–193 ; (2013), arXiv: 1211.2678v2 | DOI | MR | Zbl
[2] Schémas en groupes, Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA 3), v. I, Lecture Notes in Math., 151, eds. M. Demazure, A. Grothendieck, Springer-Verlag, Berlin–New York, 1970, xv+564 pp. ; v. II, Lecture Notes in Math., 152, ix+654 pp. ; v. III, Lecture Notes in Math., 153, viii+529 pp. | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[3] J. P. Serre, “Les espaces fibrés algébriques”, Anneaux de Chow et applications, Seminaire C. Chevalley; 2e année, Secrétariat mathématique, Paris, 1958, Exp. No. 1, 37 pp. | MR | Zbl
[4] A. Grothendieck, Séminaire Chevalley; 2-e année, Anneaux de Chow et applications, Secrétariat mathématique, Paris, 1958, Exp. No. 5, 29 pp. | MR | Zbl
[5] A. Grothendieck, “Le group de Brauer. II. Théorie cohomologique”, Dix exposés sur la cohomologie de schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 67–87 | MR | Zbl
[6] I. Panin, “On Grothendieck–Serre conjecture concerning principal bundles”, Proceedings of the international congress of mathematicians (Rio de Janeiro, 2018), v. 2, World Sci. Publ., Hackensack, NJ, 2018, 201–221 | MR
[7] I. A. Panin, “Sovershennye troiki i gomotopii otobrazhenii motivnykh prostranstv”, Izv. RAN. Ser. matem., 83:4 (2019), 158–193 ; I. Panin, “Nice triples and moving lemmas for motivic spaces”, Izv. Math., 83:4 (2019), 796–829 ; (2017), arXiv: 1707.01755 | DOI | MR | Zbl | DOI
[8] I. Panin, “Nice triples and the Grothendieck–Serre conjecture concerning principal $G$-bundles over reductive group schemes”, Duke Math. J., 168:2 (2019), 351–375 ; (2017), arXiv: 1707.01756 | DOI | MR | Zbl
[9] I. A. Panin, “Two purity theorems and the Grothendieck-Serre conjecture concerning principal $\mathbf G$-bundles”, Sb. Math., 211:12 (2020), 1777–1794 ; arXiv: 1707.01763 | DOI | DOI | MR
[10] B. Poonen, “Bertini theorems over finite fields”, Ann. of Math. (2), 160:3 (2004), 1099–1127 | DOI | MR | Zbl
[11] F. Charles, B. Poonen, “Bertini irreducibility theorems over finite fields”, J. Amer. Math. Soc., 29:1 (2016), 81–94 ; (2013), arXiv: 1311.4960v1 | DOI | MR | Zbl
[12] M. Ojanguren, I. Panin, “A purity theorem for the Witt group”, Ann. Sci. École Norm. Sup. (4), 32:1 (1999), 71–86 | DOI | MR | Zbl
[13] M. Ojanguren, I. Panin, “Rationally trivial hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198 | DOI | MR | Zbl
[14] J.-L. Colliot-Thélène, M. Ojanguren, “Espaces principaux homogènes localement triviaux”, Inst. Hautes Études Sci. Publ. Math., 75:2 (1992), 97–122 | DOI | MR | Zbl
[15] P. Gille, “Torseurs sur la droite affine”, Transform. Groups, 7:3 (2002), 231–245 | DOI | MR | Zbl
[16] Ph. Gille, “Le problème de Kneser–Tits”, Séminaire N. Bourbaki, v. 2007/2008, Astérisque, 326, Soc. Math. France, Paris, 2009, Exp. No. 983, vii, 39–81 | MR | Zbl
[17] I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: I”, Compos. Math., 151:3 (2015), 535–567 | DOI | MR | Zbl