Homogenization of~Kirchhoff plates with oscillating edges and point supports
Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 722-779

Voir la notice de l'article provenant de la source Math-Net.Ru

We study deformations of a long (narrow after rescaling) Kirchhoff plate with periodic (rapidly oscillating) boundary. We deduce a limiting system of two ordinary differential equations of orders 4 and 2 which describe the deflection and torsion of a two-dimensional plate in the leading order. We also consider point supports (Sobolev conditions) whose configuration influences the result of homogenizing the biharmonic equation by decreasing the size of the limiting system of differential equations or completely eliminating it. The boundary-layer phenomenon near the end faces of the plate is studied for various ways of fastening as well as for angular junctions of two long plates, possibly by point clamps (Sobolev conjugation conditions). We discuss full asymptotic series for solutions of static problems and the spectral problems of plate oscillations.
Keywords: biharmonic equation, narrow plate, rapidly oscillating boundary, asymptotic expansion, one-dimensional model, boundary layer, point supports and rivets
Mots-clés : Sobolev conditions at points.
@article{IM2_2020_84_4_a5,
     author = {S. A. Nazarov},
     title = {Homogenization {of~Kirchhoff} plates with oscillating edges and point supports},
     journal = {Izvestiya. Mathematics },
     pages = {722--779},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Homogenization of~Kirchhoff plates with oscillating edges and point supports
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 722
EP  - 779
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a5/
LA  - en
ID  - IM2_2020_84_4_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Homogenization of~Kirchhoff plates with oscillating edges and point supports
%J Izvestiya. Mathematics 
%D 2020
%P 722-779
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a5/
%G en
%F IM2_2020_84_4_a5
S. A. Nazarov. Homogenization of~Kirchhoff plates with oscillating edges and point supports. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 722-779. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a5/