Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_4_a5, author = {S. A. Nazarov}, title = {Homogenization {of~Kirchhoff} plates with oscillating edges and point supports}, journal = {Izvestiya. Mathematics }, pages = {722--779}, publisher = {mathdoc}, volume = {84}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a5/} }
S. A. Nazarov. Homogenization of~Kirchhoff plates with oscillating edges and point supports. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 722-779. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a5/
[1] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991, viii+286 pp. | MR | MR | Zbl | Zbl
[2] M. Sh. Birman, “O variatsionnom metode Trefftsa dlya uravneniya $\Delta^2u=f$”, Dokl. AN SSSR, 101:2 (1955), 201–204 | MR | Zbl
[3] S. G. Mikhlin, Variational methods in mathematical physics, A Pergamon Press Book The Macmillan Co., New York, 1964, xxxii+582 pp. | MR | MR | Zbl | Zbl
[4] G. Buttazzo, S. A. Nazarov, “An optimization problem for the biharmonic equation with Sobolev conditions”, J. Math. Sci. (N.Y.), 176:6 (2011), 786–796 | DOI | MR | Zbl
[5] G. Buttazzo, G. Cardone, S. A. Nazarov, “Thin elastic plates supported over small areas. II. Variational-asymptotic models”, J. Convex Anal., 24:3 (2017), 819–855 | MR | Zbl
[6] S. A. Nazarov, “General averaging procedure for selfadjoint elliptic systems in many-dimensional domains, including thin ones”, St. Petersburg Math. J., 7:5 (1996), 681–748 | MR | Zbl
[7] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | DOI | MR | Zbl
[8] S. A. Nazarov, “Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators”, J. Math. Sci. (N.Y.), 92:6 (1998), 4338–4353 | DOI | MR | Zbl
[9] S. A. Nazarov, “Non-self-adjoint elliptic problems with a polynomial property in domains possessing cylindrical outlets to infinity”, J. Math. Sci. (N.Y.), 101:5 (2000), 3512–3522 | DOI | MR | Zbl
[10] S. A. Nazarov, “The asymptotics of natural oscillations of a long two-dimensional Kirchhoff plate with variable cross-section”, Sb. Math., 209:9 (2018), 1287–1336 | DOI | DOI | MR | Zbl
[11] F. Gazzola, Mathematical models for suspension bridges. Nonlinear structural instability, MS A. Model. Simul. Appl., 15, Springer, Cham, 2015, xxii+259 pp. | DOI | MR | Zbl
[12] V. Maz'ya, S. Nazarov, B. Plamenevskii, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Oper. Theory Adv. Appl., 111, 112, Birkhäuser, Basel, 2000, xxiv+435 pp., xxiv+323 pp. | MR | MR | MR | MR | Zbl
[13] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauch. kn., Novosibirsk, 2002, 406 pp.
[14] D. Morgenstern, “Herleitung der Plattentheorie aus der dreidimensionalen Elastizitätstheorie”, Arch. Rational Mech. Anal., 4 (1959), 145–152 | DOI | MR | Zbl
[15] B. A. Shoikhet, “On asymptotically exact equations of thin plates of complex structure”, J. Appl. Math. Mech., 37:5 (1973), 867–877 | DOI | MR | Zbl
[16] P. G. Ciarlet, Plates and junctions in elastic multi-structures. An asymptotic analysis, Rech. Math. Appl., 14, Masson, Paris; Springer-Verlag, Berlin, 1990, viii+215 pp. | MR | Zbl
[17] J. Sanchez-Hubert, É. Sanchez-Palencia, Coques élastiques minces. Propriétés asymptotiques, Rech. Math. Appl., Masson, Paris, 1997, xix+376 pp. | Zbl
[18] E. A. Akimova, S. A. Nazarov, G. A. Chechkin, “Asymptotics of the solution of the problem of deformation of an arbitrary locally periodic thin plate”, Trans. Moscow Math. Soc., 2004, 1–29 | DOI | MR | Zbl
[19] G. Cardone, A. Corbo Esposito, S. A. Nazarov, “Homogenization of the mixed boundary-value problem for a formally selfadjoint elliptic system in a periodically punched domain”, St. Petersburg Math. J., 21:4 (2010), 601–634 | DOI | MR | Zbl
[20] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16 (1967), 227–313 | MR | Zbl
[21] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl
[22] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997, x+414 pp. | MR | Zbl
[23] A. Pazy, “Asymptotic expansions of solutions of ordinary differential equations in Hilbert space”, Arch. Rational Mech. Anal., 24 (1967), 193–218 | DOI | MR | Zbl
[24] M. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners of plate in extension”, J. Appl. Mech., 19:2 (1952), 526–528
[25] V. Z. Parton, P. I. Perlin, Mathematical methods of the theory of elasticity, v. 1, 2, Mir, Moscow, 1984, 317 pp., 356 pp. | MR | MR | MR | Zbl | Zbl
[26] S. A. Nazarov, “Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)”, Sb. Math., 191:7 (2000), 1075–1106 | DOI | DOI | MR | Zbl
[27] S. A. Nazarov, “Struktura reshenii ellipticheskikh kraevykh zadach v tonkikh oblastyakh”, Vestn. LGU. Ser. 1. Matem., mekh., astronom., 1982, no. 7(2), 65–68 | MR | Zbl
[28] I. S. Zorin, S. A. Nazarov, “Edge effect in the bending of a thin three-dimensional plate”, J. Appl. Math. Mech., 53:4 (1989), 500–507 | DOI | MR | Zbl
[29] M. Dauge, I. Djurdjevic, A. Rössle, “Full asymptotic expansions for thin elastic free plates”, C. R. Acad. Sci. Paris Sér. I Math., 326:10 (1998), 1243–1248 | DOI | MR | Zbl
[30] M. Dauge, I. Gruais, A. Rössle, “The influence of lateral boundary conditions on the asymptotics in thin elastic plates”, SIAM J. Math. Anal., 31:2 (1999), 305–345 | DOI | MR | Zbl
[31] G. Panasenko, Multi-scale modelling for structures and composites, Springer, Dordrecht, 2005, xiv+398 pp. | DOI | MR | Zbl
[32] S. A. Nazarov, “Elliptic boundary value problems with periodic coefficients in a cylinder”, Math. USSR-Izv., 18:1 (1982), 89–98 | DOI | MR | Zbl
[33] P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60 | DOI | MR | Zbl
[34] S. A. Nazarov, “On the constants in the asymptotics of solutions of elliptic boundary-value problems with periodic coefficients in a cylinder”, Vestn. Leningr. Univ., Math., 18:3 (1985), 16–22 | MR | Zbl
[35] S. A. Nazarov, “Justification of the asymptotic theory of thin rods. Integral and pointwise estimates”, J. Math. Sci. (N.Y.), 97:4 (1999), 4245–4279 | DOI | MR | Zbl
[36] S. A. Nazarov, “Estimates for the second order derivatives of eigenvectors in thin anisotropic plates with variable thickness”, J. Math. Sci. (N.Y.), 132:1 (2006), 91–102 | DOI | MR | Zbl
[37] S. A. Nazarov, “Asymptotics of the deflection of a cruciform junction of two narrow Kirchhoff plates”, Comput. Math. Math. Phys., 58:7 (2018), 1150–1171 | DOI | DOI | MR | Zbl
[38] M. van Dyke, Perturbation methods in fluid mechanics, Appl. Math. Mech., 8, Academic Press, New York–London, 1964, x+229 pp. | MR | Zbl | Zbl
[39] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl
[40] M. I. Višik, L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Amer. Math. Soc. Transl. Ser. 2, 20, Amer. Math. Soc., Providence, RI, 1962, 239–364 | DOI | MR | MR | Zbl | Zbl
[41] A. Gaudiello, G. Panasenko, A. Piatnitski, “Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multi-structure”, Commun. Contemp. Math., 18:5 (2016), 1550057, 27 pp. | DOI | MR | Zbl
[42] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl