Homogenization of~Kirchhoff plates with oscillating edges and point supports
Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 722-779.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study deformations of a long (narrow after rescaling) Kirchhoff plate with periodic (rapidly oscillating) boundary. We deduce a limiting system of two ordinary differential equations of orders 4 and 2 which describe the deflection and torsion of a two-dimensional plate in the leading order. We also consider point supports (Sobolev conditions) whose configuration influences the result of homogenizing the biharmonic equation by decreasing the size of the limiting system of differential equations or completely eliminating it. The boundary-layer phenomenon near the end faces of the plate is studied for various ways of fastening as well as for angular junctions of two long plates, possibly by point clamps (Sobolev conjugation conditions). We discuss full asymptotic series for solutions of static problems and the spectral problems of plate oscillations.
Keywords: biharmonic equation, narrow plate, rapidly oscillating boundary, asymptotic expansion, one-dimensional model, boundary layer, point supports and rivets
Mots-clés : Sobolev conditions at points.
@article{IM2_2020_84_4_a5,
     author = {S. A. Nazarov},
     title = {Homogenization {of~Kirchhoff} plates with oscillating edges and point supports},
     journal = {Izvestiya. Mathematics },
     pages = {722--779},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Homogenization of~Kirchhoff plates with oscillating edges and point supports
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 722
EP  - 779
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a5/
LA  - en
ID  - IM2_2020_84_4_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Homogenization of~Kirchhoff plates with oscillating edges and point supports
%J Izvestiya. Mathematics 
%D 2020
%P 722-779
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a5/
%G en
%F IM2_2020_84_4_a5
S. A. Nazarov. Homogenization of~Kirchhoff plates with oscillating edges and point supports. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 722-779. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a5/

[1] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991, viii+286 pp. | MR | MR | Zbl | Zbl

[2] M. Sh. Birman, “O variatsionnom metode Trefftsa dlya uravneniya $\Delta^2u=f$”, Dokl. AN SSSR, 101:2 (1955), 201–204 | MR | Zbl

[3] S. G. Mikhlin, Variational methods in mathematical physics, A Pergamon Press Book The Macmillan Co., New York, 1964, xxxii+582 pp. | MR | MR | Zbl | Zbl

[4] G. Buttazzo, S. A. Nazarov, “An optimization problem for the biharmonic equation with Sobolev conditions”, J. Math. Sci. (N.Y.), 176:6 (2011), 786–796 | DOI | MR | Zbl

[5] G. Buttazzo, G. Cardone, S. A. Nazarov, “Thin elastic plates supported over small areas. II. Variational-asymptotic models”, J. Convex Anal., 24:3 (2017), 819–855 | MR | Zbl

[6] S. A. Nazarov, “General averaging procedure for selfadjoint elliptic systems in many-dimensional domains, including thin ones”, St. Petersburg Math. J., 7:5 (1996), 681–748 | MR | Zbl

[7] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | DOI | MR | Zbl

[8] S. A. Nazarov, “Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators”, J. Math. Sci. (N.Y.), 92:6 (1998), 4338–4353 | DOI | MR | Zbl

[9] S. A. Nazarov, “Non-self-adjoint elliptic problems with a polynomial property in domains possessing cylindrical outlets to infinity”, J. Math. Sci. (N.Y.), 101:5 (2000), 3512–3522 | DOI | MR | Zbl

[10] S. A. Nazarov, “The asymptotics of natural oscillations of a long two-dimensional Kirchhoff plate with variable cross-section”, Sb. Math., 209:9 (2018), 1287–1336 | DOI | DOI | MR | Zbl

[11] F. Gazzola, Mathematical models for suspension bridges. Nonlinear structural instability, MS A. Model. Simul. Appl., 15, Springer, Cham, 2015, xxii+259 pp. | DOI | MR | Zbl

[12] V. Maz'ya, S. Nazarov, B. Plamenevskii, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Oper. Theory Adv. Appl., 111, 112, Birkhäuser, Basel, 2000, xxiv+435 pp., xxiv+323 pp. | MR | MR | MR | MR | Zbl

[13] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauch. kn., Novosibirsk, 2002, 406 pp.

[14] D. Morgenstern, “Herleitung der Plattentheorie aus der dreidimensionalen Elastizitätstheorie”, Arch. Rational Mech. Anal., 4 (1959), 145–152 | DOI | MR | Zbl

[15] B. A. Shoikhet, “On asymptotically exact equations of thin plates of complex structure”, J. Appl. Math. Mech., 37:5 (1973), 867–877 | DOI | MR | Zbl

[16] P. G. Ciarlet, Plates and junctions in elastic multi-structures. An asymptotic analysis, Rech. Math. Appl., 14, Masson, Paris; Springer-Verlag, Berlin, 1990, viii+215 pp. | MR | Zbl

[17] J. Sanchez-Hubert, É. Sanchez-Palencia, Coques élastiques minces. Propriétés asymptotiques, Rech. Math. Appl., Masson, Paris, 1997, xix+376 pp. | Zbl

[18] E. A. Akimova, S. A. Nazarov, G. A. Chechkin, “Asymptotics of the solution of the problem of deformation of an arbitrary locally periodic thin plate”, Trans. Moscow Math. Soc., 2004, 1–29 | DOI | MR | Zbl

[19] G. Cardone, A. Corbo Esposito, S. A. Nazarov, “Homogenization of the mixed boundary-value problem for a formally selfadjoint elliptic system in a periodically punched domain”, St. Petersburg Math. J., 21:4 (2010), 601–634 | DOI | MR | Zbl

[20] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16 (1967), 227–313 | MR | Zbl

[21] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl

[22] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997, x+414 pp. | MR | Zbl

[23] A. Pazy, “Asymptotic expansions of solutions of ordinary differential equations in Hilbert space”, Arch. Rational Mech. Anal., 24 (1967), 193–218 | DOI | MR | Zbl

[24] M. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners of plate in extension”, J. Appl. Mech., 19:2 (1952), 526–528

[25] V. Z. Parton, P. I. Perlin, Mathematical methods of the theory of elasticity, v. 1, 2, Mir, Moscow, 1984, 317 pp., 356 pp. | MR | MR | MR | Zbl | Zbl

[26] S. A. Nazarov, “Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)”, Sb. Math., 191:7 (2000), 1075–1106 | DOI | DOI | MR | Zbl

[27] S. A. Nazarov, “Struktura reshenii ellipticheskikh kraevykh zadach v tonkikh oblastyakh”, Vestn. LGU. Ser. 1. Matem., mekh., astronom., 1982, no. 7(2), 65–68 | MR | Zbl

[28] I. S. Zorin, S. A. Nazarov, “Edge effect in the bending of a thin three-dimensional plate”, J. Appl. Math. Mech., 53:4 (1989), 500–507 | DOI | MR | Zbl

[29] M. Dauge, I. Djurdjevic, A. Rössle, “Full asymptotic expansions for thin elastic free plates”, C. R. Acad. Sci. Paris Sér. I Math., 326:10 (1998), 1243–1248 | DOI | MR | Zbl

[30] M. Dauge, I. Gruais, A. Rössle, “The influence of lateral boundary conditions on the asymptotics in thin elastic plates”, SIAM J. Math. Anal., 31:2 (1999), 305–345 | DOI | MR | Zbl

[31] G. Panasenko, Multi-scale modelling for structures and composites, Springer, Dordrecht, 2005, xiv+398 pp. | DOI | MR | Zbl

[32] S. A. Nazarov, “Elliptic boundary value problems with periodic coefficients in a cylinder”, Math. USSR-Izv., 18:1 (1982), 89–98 | DOI | MR | Zbl

[33] P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60 | DOI | MR | Zbl

[34] S. A. Nazarov, “On the constants in the asymptotics of solutions of elliptic boundary-value problems with periodic coefficients in a cylinder”, Vestn. Leningr. Univ., Math., 18:3 (1985), 16–22 | MR | Zbl

[35] S. A. Nazarov, “Justification of the asymptotic theory of thin rods. Integral and pointwise estimates”, J. Math. Sci. (N.Y.), 97:4 (1999), 4245–4279 | DOI | MR | Zbl

[36] S. A. Nazarov, “Estimates for the second order derivatives of eigenvectors in thin anisotropic plates with variable thickness”, J. Math. Sci. (N.Y.), 132:1 (2006), 91–102 | DOI | MR | Zbl

[37] S. A. Nazarov, “Asymptotics of the deflection of a cruciform junction of two narrow Kirchhoff plates”, Comput. Math. Math. Phys., 58:7 (2018), 1150–1171 | DOI | DOI | MR | Zbl

[38] M. van Dyke, Perturbation methods in fluid mechanics, Appl. Math. Mech., 8, Academic Press, New York–London, 1964, x+229 pp. | MR | Zbl | Zbl

[39] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl

[40] M. I. Višik, L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Amer. Math. Soc. Transl. Ser. 2, 20, Amer. Math. Soc., Providence, RI, 1962, 239–364 | DOI | MR | MR | Zbl | Zbl

[41] A. Gaudiello, G. Panasenko, A. Piatnitski, “Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multi-structure”, Commun. Contemp. Math., 18:5 (2016), 1550057, 27 pp. | DOI | MR | Zbl

[42] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl