Sobolev spaces of~functions on a~Hilbert space endowed with a~translation-invariant measure and approximations of~semigroups
Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 694-721

Voir la notice de l'article provenant de la source Math-Net.Ru

We study measures on a real separable Hilbert space $E$ that are invariant under translations by arbitrary vectors in $E$. We define the Hilbert space $\mathcal H$ of complex-valued functions on $E$ square-integrable with respect to some translation-invariant measure $\lambda$. We determine the expectations of the operators of shift by random vectors whose distributions are given by semigroups (with respect to convolution) of Gaussian measures on $E$. We prove that these expectations form a semigroup of self-adjoint contractions on $\mathcal H$. We obtain a criterion for the strong continuity of such semigroups and study the properties of their generators (which are self-adjoint generalizations of Laplace operators to the case of functions of infinite-dimensional arguments). We introduce analogues of Sobolev spaces and spaces of smooth functions and obtain conditions for the embedding and dense embedding of spaces of smooth functions in Sobolev spaces. We apply these function spaces to problems of approximating semigroups by the expectations of random processes and study properties of our generalizations of Laplace operators and their fractional powers.
Keywords: translation-invariant measure on a Hilbert space, Laplace operator on an infinite-dimensional space, embedding theorems, random walks.
Mots-clés : Sobolev spaces
@article{IM2_2020_84_4_a4,
     author = {V. M. Busovikov and V. Zh. Sakbaev},
     title = {Sobolev spaces of~functions on {a~Hilbert} space endowed with a~translation-invariant measure and approximations of~semigroups},
     journal = {Izvestiya. Mathematics },
     pages = {694--721},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a4/}
}
TY  - JOUR
AU  - V. M. Busovikov
AU  - V. Zh. Sakbaev
TI  - Sobolev spaces of~functions on a~Hilbert space endowed with a~translation-invariant measure and approximations of~semigroups
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 694
EP  - 721
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a4/
LA  - en
ID  - IM2_2020_84_4_a4
ER  - 
%0 Journal Article
%A V. M. Busovikov
%A V. Zh. Sakbaev
%T Sobolev spaces of~functions on a~Hilbert space endowed with a~translation-invariant measure and approximations of~semigroups
%J Izvestiya. Mathematics 
%D 2020
%P 694-721
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a4/
%G en
%F IM2_2020_84_4_a4
V. M. Busovikov; V. Zh. Sakbaev. Sobolev spaces of~functions on a~Hilbert space endowed with a~translation-invariant measure and approximations of~semigroups. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 694-721. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a4/