Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_4_a4, author = {V. M. Busovikov and V. Zh. Sakbaev}, title = {Sobolev spaces of~functions on {a~Hilbert} space endowed with a~translation-invariant measure and approximations of~semigroups}, journal = {Izvestiya. Mathematics }, pages = {694--721}, publisher = {mathdoc}, volume = {84}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a4/} }
TY - JOUR AU - V. M. Busovikov AU - V. Zh. Sakbaev TI - Sobolev spaces of~functions on a~Hilbert space endowed with a~translation-invariant measure and approximations of~semigroups JO - Izvestiya. Mathematics PY - 2020 SP - 694 EP - 721 VL - 84 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a4/ LA - en ID - IM2_2020_84_4_a4 ER -
%0 Journal Article %A V. M. Busovikov %A V. Zh. Sakbaev %T Sobolev spaces of~functions on a~Hilbert space endowed with a~translation-invariant measure and approximations of~semigroups %J Izvestiya. Mathematics %D 2020 %P 694-721 %V 84 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a4/ %G en %F IM2_2020_84_4_a4
V. M. Busovikov; V. Zh. Sakbaev. Sobolev spaces of~functions on a~Hilbert space endowed with a~translation-invariant measure and approximations of~semigroups. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 694-721. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a4/
[1] I. Ya. Aref'eva, I. V. Volovich, “Notes on the SYK model in real time”, Theoret. and Math. Phys., 197:2 (2018), 1650–1662 | DOI | DOI | MR | Zbl
[2] I. V. Volovich, V. Zh. Sakbaev, “On quantum dynamics on $C^*$-algebras”, Proc. Steklov Inst. Math., 301 (2018), 25–38 | DOI | DOI | MR | Zbl
[3] L. S. Efremova, V. Zh. Sakbaev, “Notion of blowup of the solution set of differential equations and averaging of random semigroups”, Theoret. and Math. Phys., 185:2 (2015), 1582–1598 | DOI | DOI | MR | Zbl
[4] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158 | DOI | DOI | MR | Zbl
[5] V. Zh. Sakbaev, “On the law of large numbers for compositions of independent random semigroups”, Russian Math. (Iz. VUZ), 60:10 (2016), 72–76 | DOI | MR | Zbl
[6] S. Sachdev, Jinwu Ye, “Gapless spin-fluid ground state in a random quantum Heisenberg magnet”, Phys. Rev. Lett., 70:21 (1993), 3339–3342 | DOI
[7] V. Zh. Sakbaev, “Averaging of random walks and shift-invariant measures on a Hilbert space”, Theoret. and Math. Phys., 191:3 (2017), 886–909 | DOI | DOI | MR | Zbl
[8] R. Baker, ““Lebesgue measure” on $\mathbf R^{\infty}$”, Proc. Amer. Math. Soc., 113:4 (1991), 1023–1029 | DOI | MR | Zbl
[9] V. Zh. Sakbaev, “Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations”, J. Math. Sci. (N.Y.), 241:4 (2019), 469–500 | DOI | MR | Zbl
[10] D. V. Zavadskii, “Invariantnye otnositelno sdvigov mery na prostranstvakh posledovatelnostei”, Tr. MFTI, 9, no. 4, 2017, 142–148
[11] A. Weil, L'intégration dans les groupes topologiques et ses applications, Actual. Sci. Ind., 869, Hermann et Cie., Paris, 1940, 158 pp. | MR | Zbl
[12] Hui-Hsiung Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math., 463, Springer-Verlag, Berlin–New York, 1975, vi+224 pp. | DOI | MR | Zbl
[13] L. A. Borisov, Yu. N. Orlov, V. Zh. Sakbaev, “Feynman averaging of semigroups generated by Schrödinger operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21:2 (2018), 1850010, 13 pp. | DOI | MR | Zbl
[14] V. Zh. Sakbaev, “Svoistva polugrupp, porozhdaemykh sluchainymi bluzhdaniyami v beskonechnomernom prostranstve”, Tr. MFTI, 9:1 (2017), 12–21
[15] A. M. Vershik, “Does there exist a Lebesgue measure in the infinite-dimensional space?”, Proc. Steklov Inst. Math., 259 (2007), 248–272 | DOI | MR | Zbl
[16] V. Zh. Sakbaev, “Averaging of random flows of linear and nonlinear maps”, J. Phys. Conf. Ser., 990:1 (2018), 012012, 18 pp. | DOI | MR
[17] V. Zh. Sakbaev, “Konechno-additivnye mery na banakhovykh prostranstvakh, invariantnye otnositelno sdvigov”, Kvantovaya dinamika i funktsionalnye integraly. Materialy nauchnoi konferentsii (IPM im. M. V. Keldysha, Moskva, 2016), IPM, M., 2018, 118–130
[18] V. M. Busovikov, “Svoistva odnoi konechno-additivnoi mery na $l_p$, invariantnoi otnositelno sdvigov”, Tr. MFTI, 10:2 (2018), 163–172
[19] V. I. Bogachev, Measure theory, v. I, Springer-Verlag, Berlin, 2007, xviii+500 pp. | DOI | MR | Zbl
[20] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | Zbl
[21] V. Zh. Sakbaev, “Polugruppy preobrazovanii prostranstva funktsii, kvadratichno integriruemykh po translyatsionno invariantnoi mere na banakhovom prostranstve”, Kvantovaya veroyatnost, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 151, VINITI RAN, M., 2018, 73–90 | MR
[22] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, Inc., New York–London, 1972, xvii+325 pp. | MR | MR | Zbl
[23] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998, xii+433 pp. | DOI | MR | MR | Zbl | Zbl
[24] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, 2-e pererab. i susch. dop. izd., Lenand, M., 2015, 336 pp. | MR | Zbl
[25] M. G. Sonis, “O nekotorykh izmerimykh podprostranstvakh prostranstva vsekh posledovatelnostei s gaussovoi meroi”, UMN, 21:5(131) (1966), 277–279 | MR
[26] I. D. Remizov, “Quasi-Feynman formulas – a method of obtaining the evolution operator for the Schrödinger equation”, J. Funct. Anal., 270:12 (2016), 4540–4557 | DOI | MR | Zbl
[27] V. V. Zhikov, “Weighted Sobolev spaces”, Sb. Math., 189:8 (1998), 1139–1170 | DOI | DOI | MR | Zbl
[28] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | DOI | MR | MR | Zbl | Zbl
[29] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000, xxii+586 pp. | DOI | MR | Zbl
[30] M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren Math. Wiss., 260, Springer-Verlag, New York, 1984, viii+326 pp. | DOI | MR | MR | Zbl | Zbl
[31] E. B. Dynkin, Markov processes, v. 1, 2, Grundlehren Math. Wiss., 121, 122, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1965, xii+365 pp., viii+274 pp. | DOI | MR | MR | Zbl | Zbl
[32] L. A. Borisov, Yu. N. Orlov, V. Zh. Sakbaev, “Formuly Feinmana dlya usredneniya polugrupp, porozhdaemykh operatorami tipa Shredingera”, Preprinty IPM im. M. V. Keldysha, 2015, 057, 23 pp.
[33] V. I. Bogachev, O. G. Smolyanov, Real and functional analysis, Moscow Lectures, 4, Springer, Cham, 2020, xvi+586 pp. | DOI | Zbl