Sobolev spaces of~functions on a~Hilbert space endowed with a~translation-invariant measure and approximations of~semigroups
Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 694-721.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study measures on a real separable Hilbert space $E$ that are invariant under translations by arbitrary vectors in $E$. We define the Hilbert space $\mathcal H$ of complex-valued functions on $E$ square-integrable with respect to some translation-invariant measure $\lambda$. We determine the expectations of the operators of shift by random vectors whose distributions are given by semigroups (with respect to convolution) of Gaussian measures on $E$. We prove that these expectations form a semigroup of self-adjoint contractions on $\mathcal H$. We obtain a criterion for the strong continuity of such semigroups and study the properties of their generators (which are self-adjoint generalizations of Laplace operators to the case of functions of infinite-dimensional arguments). We introduce analogues of Sobolev spaces and spaces of smooth functions and obtain conditions for the embedding and dense embedding of spaces of smooth functions in Sobolev spaces. We apply these function spaces to problems of approximating semigroups by the expectations of random processes and study properties of our generalizations of Laplace operators and their fractional powers.
Keywords: translation-invariant measure on a Hilbert space, Laplace operator on an infinite-dimensional space, embedding theorems, random walks.
Mots-clés : Sobolev spaces
@article{IM2_2020_84_4_a4,
     author = {V. M. Busovikov and V. Zh. Sakbaev},
     title = {Sobolev spaces of~functions on {a~Hilbert} space endowed with a~translation-invariant measure and approximations of~semigroups},
     journal = {Izvestiya. Mathematics },
     pages = {694--721},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a4/}
}
TY  - JOUR
AU  - V. M. Busovikov
AU  - V. Zh. Sakbaev
TI  - Sobolev spaces of~functions on a~Hilbert space endowed with a~translation-invariant measure and approximations of~semigroups
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 694
EP  - 721
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a4/
LA  - en
ID  - IM2_2020_84_4_a4
ER  - 
%0 Journal Article
%A V. M. Busovikov
%A V. Zh. Sakbaev
%T Sobolev spaces of~functions on a~Hilbert space endowed with a~translation-invariant measure and approximations of~semigroups
%J Izvestiya. Mathematics 
%D 2020
%P 694-721
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a4/
%G en
%F IM2_2020_84_4_a4
V. M. Busovikov; V. Zh. Sakbaev. Sobolev spaces of~functions on a~Hilbert space endowed with a~translation-invariant measure and approximations of~semigroups. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 694-721. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a4/

[1] I. Ya. Aref'eva, I. V. Volovich, “Notes on the SYK model in real time”, Theoret. and Math. Phys., 197:2 (2018), 1650–1662 | DOI | DOI | MR | Zbl

[2] I. V. Volovich, V. Zh. Sakbaev, “On quantum dynamics on $C^*$-algebras”, Proc. Steklov Inst. Math., 301 (2018), 25–38 | DOI | DOI | MR | Zbl

[3] L. S. Efremova, V. Zh. Sakbaev, “Notion of blowup of the solution set of differential equations and averaging of random semigroups”, Theoret. and Math. Phys., 185:2 (2015), 1582–1598 | DOI | DOI | MR | Zbl

[4] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158 | DOI | DOI | MR | Zbl

[5] V. Zh. Sakbaev, “On the law of large numbers for compositions of independent random semigroups”, Russian Math. (Iz. VUZ), 60:10 (2016), 72–76 | DOI | MR | Zbl

[6] S. Sachdev, Jinwu Ye, “Gapless spin-fluid ground state in a random quantum Heisenberg magnet”, Phys. Rev. Lett., 70:21 (1993), 3339–3342 | DOI

[7] V. Zh. Sakbaev, “Averaging of random walks and shift-invariant measures on a Hilbert space”, Theoret. and Math. Phys., 191:3 (2017), 886–909 | DOI | DOI | MR | Zbl

[8] R. Baker, ““Lebesgue measure” on $\mathbf R^{\infty}$”, Proc. Amer. Math. Soc., 113:4 (1991), 1023–1029 | DOI | MR | Zbl

[9] V. Zh. Sakbaev, “Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations”, J. Math. Sci. (N.Y.), 241:4 (2019), 469–500 | DOI | MR | Zbl

[10] D. V. Zavadskii, “Invariantnye otnositelno sdvigov mery na prostranstvakh posledovatelnostei”, Tr. MFTI, 9, no. 4, 2017, 142–148

[11] A. Weil, L'intégration dans les groupes topologiques et ses applications, Actual. Sci. Ind., 869, Hermann et Cie., Paris, 1940, 158 pp. | MR | Zbl

[12] Hui-Hsiung Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math., 463, Springer-Verlag, Berlin–New York, 1975, vi+224 pp. | DOI | MR | Zbl

[13] L. A. Borisov, Yu. N. Orlov, V. Zh. Sakbaev, “Feynman averaging of semigroups generated by Schrödinger operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21:2 (2018), 1850010, 13 pp. | DOI | MR | Zbl

[14] V. Zh. Sakbaev, “Svoistva polugrupp, porozhdaemykh sluchainymi bluzhdaniyami v beskonechnomernom prostranstve”, Tr. MFTI, 9:1 (2017), 12–21

[15] A. M. Vershik, “Does there exist a Lebesgue measure in the infinite-dimensional space?”, Proc. Steklov Inst. Math., 259 (2007), 248–272 | DOI | MR | Zbl

[16] V. Zh. Sakbaev, “Averaging of random flows of linear and nonlinear maps”, J. Phys. Conf. Ser., 990:1 (2018), 012012, 18 pp. | DOI | MR

[17] V. Zh. Sakbaev, “Konechno-additivnye mery na banakhovykh prostranstvakh, invariantnye otnositelno sdvigov”, Kvantovaya dinamika i funktsionalnye integraly. Materialy nauchnoi konferentsii (IPM im. M. V. Keldysha, Moskva, 2016), IPM, M., 2018, 118–130

[18] V. M. Busovikov, “Svoistva odnoi konechno-additivnoi mery na $l_p$, invariantnoi otnositelno sdvigov”, Tr. MFTI, 10:2 (2018), 163–172

[19] V. I. Bogachev, Measure theory, v. I, Springer-Verlag, Berlin, 2007, xviii+500 pp. | DOI | MR | Zbl

[20] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | Zbl

[21] V. Zh. Sakbaev, “Polugruppy preobrazovanii prostranstva funktsii, kvadratichno integriruemykh po translyatsionno invariantnoi mere na banakhovom prostranstve”, Kvantovaya veroyatnost, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 151, VINITI RAN, M., 2018, 73–90 | MR

[22] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, Inc., New York–London, 1972, xvii+325 pp. | MR | MR | Zbl

[23] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998, xii+433 pp. | DOI | MR | MR | Zbl | Zbl

[24] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, 2-e pererab. i susch. dop. izd., Lenand, M., 2015, 336 pp. | MR | Zbl

[25] M. G. Sonis, “O nekotorykh izmerimykh podprostranstvakh prostranstva vsekh posledovatelnostei s gaussovoi meroi”, UMN, 21:5(131) (1966), 277–279 | MR

[26] I. D. Remizov, “Quasi-Feynman formulas – a method of obtaining the evolution operator for the Schrödinger equation”, J. Funct. Anal., 270:12 (2016), 4540–4557 | DOI | MR | Zbl

[27] V. V. Zhikov, “Weighted Sobolev spaces”, Sb. Math., 189:8 (1998), 1139–1170 | DOI | DOI | MR | Zbl

[28] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | DOI | MR | MR | Zbl | Zbl

[29] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000, xxii+586 pp. | DOI | MR | Zbl

[30] M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren Math. Wiss., 260, Springer-Verlag, New York, 1984, viii+326 pp. | DOI | MR | MR | Zbl | Zbl

[31] E. B. Dynkin, Markov processes, v. 1, 2, Grundlehren Math. Wiss., 121, 122, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1965, xii+365 pp., viii+274 pp. | DOI | MR | MR | Zbl | Zbl

[32] L. A. Borisov, Yu. N. Orlov, V. Zh. Sakbaev, “Formuly Feinmana dlya usredneniya polugrupp, porozhdaemykh operatorami tipa Shredingera”, Preprinty IPM im. M. V. Keldysha, 2015, 057, 23 pp.

[33] V. I. Bogachev, O. G. Smolyanov, Real and functional analysis, Moscow Lectures, 4, Springer, Cham, 2020, xvi+586 pp. | DOI | Zbl