Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_4_a3, author = {K. Altmann and D. Ploog}, title = {Displaying the cohomology of~toric line bundles}, journal = {Izvestiya. Mathematics }, pages = {683--693}, publisher = {mathdoc}, volume = {84}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a3/} }
K. Altmann; D. Ploog. Displaying the cohomology of~toric line bundles. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 683-693. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a3/
[1] K. Altmann, J. Buczyński, L. Kastner, A.-L. Winz, “Immaculate line bundles on toric varieties”, Pure Appl. Math. Q. (to appear)
[2] D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp. | DOI | MR | Zbl
[3] M. Demazure, “Sous-groupes algébriques de rang maximum du groupe de Cremona”, Ann. Sci. École Norm. Sup. (4), 3:4 (1970), 507–588 | DOI | MR | Zbl
[4] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973, viii+209 pp. | DOI | MR | Zbl
[5] V. I. Danilov, “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR | Zbl
[6] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988, viii+212 pp. | MR | Zbl
[7] W. Fulton, Introduction to toric varieties, The 1989 W. H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp. | DOI | MR | Zbl
[8] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | DOI | MR | MR | Zbl | Zbl
[9] R. Bott, L. W. Tu, Differential forms in algebraic topology, Grad. Texts in Math., 82, Springer-Verlag, New York–Berlin, 1982, xiv+332 pp. | DOI | MR | MR | Zbl | Zbl
[10] D. Huybrechts, Fourier–Mukai transforms in algebraic geometry, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, Oxford, 2006, viii+307 pp. | DOI | MR | Zbl
[11] D. Orlov, “Remarks on generators and dimensions of triangulated categories”, Mosc. Math. J., 9:1 (2009), 143–149 | DOI | MR | Zbl