Displaying the cohomology of~toric line bundles
Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 683-693

Voir la notice de l'article provenant de la source Math-Net.Ru

There is a standard approach to calculate the cohomology of torus-invariant sheaves $\mathcal{L}$ on a toric variety via the simplicial cohomology of the associated subsets $V(\mathcal{L})$ of the space $N_\mathbb{R}$ of 1-parameter subgroups of the torus. For a line bundle $\mathcal{L}$ represented by a formal difference $\Delta^+-\Delta^-$ of polyhedra in the character space $M_\mathbb{R}$, [1] contains a simpler formula for the cohomology of $\mathcal{L}$, replacing $V(\mathcal{L})$ by the set-theoretic difference $\Delta^- \setminus \Delta^+$. Here, we provide a short and direct proof of this formula.
Keywords: toric variety, line bundle, sheaf cohomology, lattice, polytope.
Mots-clés : Cartier divisor
@article{IM2_2020_84_4_a3,
     author = {K. Altmann and D. Ploog},
     title = {Displaying the cohomology of~toric line bundles},
     journal = {Izvestiya. Mathematics },
     pages = {683--693},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a3/}
}
TY  - JOUR
AU  - K. Altmann
AU  - D. Ploog
TI  - Displaying the cohomology of~toric line bundles
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 683
EP  - 693
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a3/
LA  - en
ID  - IM2_2020_84_4_a3
ER  - 
%0 Journal Article
%A K. Altmann
%A D. Ploog
%T Displaying the cohomology of~toric line bundles
%J Izvestiya. Mathematics 
%D 2020
%P 683-693
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a3/
%G en
%F IM2_2020_84_4_a3
K. Altmann; D. Ploog. Displaying the cohomology of~toric line bundles. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 683-693. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a3/