Displaying the cohomology of~toric line bundles
Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 683-693.

Voir la notice de l'article provenant de la source Math-Net.Ru

There is a standard approach to calculate the cohomology of torus-invariant sheaves $\mathcal{L}$ on a toric variety via the simplicial cohomology of the associated subsets $V(\mathcal{L})$ of the space $N_\mathbb{R}$ of 1-parameter subgroups of the torus. For a line bundle $\mathcal{L}$ represented by a formal difference $\Delta^+-\Delta^-$ of polyhedra in the character space $M_\mathbb{R}$, [1] contains a simpler formula for the cohomology of $\mathcal{L}$, replacing $V(\mathcal{L})$ by the set-theoretic difference $\Delta^- \setminus \Delta^+$. Here, we provide a short and direct proof of this formula.
Keywords: toric variety, line bundle, sheaf cohomology, lattice, polytope.
Mots-clés : Cartier divisor
@article{IM2_2020_84_4_a3,
     author = {K. Altmann and D. Ploog},
     title = {Displaying the cohomology of~toric line bundles},
     journal = {Izvestiya. Mathematics },
     pages = {683--693},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a3/}
}
TY  - JOUR
AU  - K. Altmann
AU  - D. Ploog
TI  - Displaying the cohomology of~toric line bundles
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 683
EP  - 693
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a3/
LA  - en
ID  - IM2_2020_84_4_a3
ER  - 
%0 Journal Article
%A K. Altmann
%A D. Ploog
%T Displaying the cohomology of~toric line bundles
%J Izvestiya. Mathematics 
%D 2020
%P 683-693
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a3/
%G en
%F IM2_2020_84_4_a3
K. Altmann; D. Ploog. Displaying the cohomology of~toric line bundles. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 683-693. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a3/

[1] K. Altmann, J. Buczyński, L. Kastner, A.-L. Winz, “Immaculate line bundles on toric varieties”, Pure Appl. Math. Q. (to appear)

[2] D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp. | DOI | MR | Zbl

[3] M. Demazure, “Sous-groupes algébriques de rang maximum du groupe de Cremona”, Ann. Sci. École Norm. Sup. (4), 3:4 (1970), 507–588 | DOI | MR | Zbl

[4] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973, viii+209 pp. | DOI | MR | Zbl

[5] V. I. Danilov, “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR | Zbl

[6] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988, viii+212 pp. | MR | Zbl

[7] W. Fulton, Introduction to toric varieties, The 1989 W. H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp. | DOI | MR | Zbl

[8] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | DOI | MR | MR | Zbl | Zbl

[9] R. Bott, L. W. Tu, Differential forms in algebraic topology, Grad. Texts in Math., 82, Springer-Verlag, New York–Berlin, 1982, xiv+332 pp. | DOI | MR | MR | Zbl | Zbl

[10] D. Huybrechts, Fourier–Mukai transforms in algebraic geometry, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, Oxford, 2006, viii+307 pp. | DOI | MR | Zbl

[11] D. Orlov, “Remarks on generators and dimensions of triangulated categories”, Mosc. Math. J., 9:1 (2009), 143–149 | DOI | MR | Zbl