On orthogonal projections of N\"{o}beling spaces
Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 627-658

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $0\le k\infty$. We prove that there is a dense open subset of the Grassmann space $\operatorname{Gr}(2k+1,m)$ such that the orthogonal projection of the standard Nöbeling space $N^m_k$ (which lies in $\mathbb R^m$ for sufficiently large $m$) to every $(2k+1)$-dimensional plane in this subset is $k$-soft and possesses the strong $k$-universal property with respect to Polish spaces. Every such orthogonal projection is a natural counterpart of the standard Nöbeling space for the category of maps.
Keywords: Nöbeling space, strong fibrewise $k$-universal property, filtered finite-dimensional selection theorem, $\operatorname{AE}(k)$-space.
Mots-clés : Dranishnikov and Chigogidze resolutions
@article{IM2_2020_84_4_a1,
     author = {S. M. Ageev},
     title = {On orthogonal projections of {N\"{o}beling} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {627--658},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a1/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - On orthogonal projections of N\"{o}beling spaces
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 627
EP  - 658
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a1/
LA  - en
ID  - IM2_2020_84_4_a1
ER  - 
%0 Journal Article
%A S. M. Ageev
%T On orthogonal projections of N\"{o}beling spaces
%J Izvestiya. Mathematics 
%D 2020
%P 627-658
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a1/
%G en
%F IM2_2020_84_4_a1
S. M. Ageev. On orthogonal projections of N\"{o}beling spaces. Izvestiya. Mathematics , Tome 84 (2020) no. 4, pp. 627-658. http://geodesic.mathdoc.fr/item/IM2_2020_84_4_a1/