On a~class of~elliptic boundary-value problems with parameter and discontinuous non-linearity
Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 592-607

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an elliptic boundary-value problem in a bounded domain with inhomogeneous Dirichlet condition, discontinuous non-linearity and a positive parameter occurring as a factor in the non-linearity. The non-linearity is in the right-hand side of the equation. It is non-positive (resp. equal to zero) for negative (resp, non-negative) values of the phase variable. Let $\widetilde{u}(x)$ be a solution of the boundary-value problem with zero right-hand side (the boundary function is assumed to be positive). Putting $v(x)=u(x)-\widetilde{u}(x)$, we reduce the original problem to a problem with homogeneous boundary condition. The spectrum of the transformed problem consists of the values of the parameter for which this problem has a non-zero solution (the function $v(x)=0$ is a solution for all values of the parameter). Under certain additional restrictions we construct an iterative process converging to a minimal semiregular solution of the transformed problem for an appropriately chosen starting point. We prove that any non-empty spectrum of the boundary-value problem is a ray $[\lambda^*,+\infty)$, where $\lambda^*>0$. As an application, we consider the Gol'dshtik mathematical model for separated flows of an incompressible fluid. We show that it satisfies the hypotheses of our theorem and has a non-empty spectrum.
Keywords: elliptic boundary-value problem, problem with parameter, discontinuous non-linearity, iterative process, minimal solution, semiregular solution, spectrum, Gol'dshtik model.
@article{IM2_2020_84_3_a4,
     author = {V. N. Pavlenko and D. K. Potapov},
     title = {On a~class of~elliptic boundary-value problems with parameter and discontinuous non-linearity},
     journal = {Izvestiya. Mathematics },
     pages = {592--607},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a4/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - D. K. Potapov
TI  - On a~class of~elliptic boundary-value problems with parameter and discontinuous non-linearity
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 592
EP  - 607
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a4/
LA  - en
ID  - IM2_2020_84_3_a4
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A D. K. Potapov
%T On a~class of~elliptic boundary-value problems with parameter and discontinuous non-linearity
%J Izvestiya. Mathematics 
%D 2020
%P 592-607
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a4/
%G en
%F IM2_2020_84_3_a4
V. N. Pavlenko; D. K. Potapov. On a~class of~elliptic boundary-value problems with parameter and discontinuous non-linearity. Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 592-607. http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a4/