On a~class of~elliptic boundary-value problems with parameter and discontinuous non-linearity
Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 592-607.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an elliptic boundary-value problem in a bounded domain with inhomogeneous Dirichlet condition, discontinuous non-linearity and a positive parameter occurring as a factor in the non-linearity. The non-linearity is in the right-hand side of the equation. It is non-positive (resp. equal to zero) for negative (resp, non-negative) values of the phase variable. Let $\widetilde{u}(x)$ be a solution of the boundary-value problem with zero right-hand side (the boundary function is assumed to be positive). Putting $v(x)=u(x)-\widetilde{u}(x)$, we reduce the original problem to a problem with homogeneous boundary condition. The spectrum of the transformed problem consists of the values of the parameter for which this problem has a non-zero solution (the function $v(x)=0$ is a solution for all values of the parameter). Under certain additional restrictions we construct an iterative process converging to a minimal semiregular solution of the transformed problem for an appropriately chosen starting point. We prove that any non-empty spectrum of the boundary-value problem is a ray $[\lambda^*,+\infty)$, where $\lambda^*>0$. As an application, we consider the Gol'dshtik mathematical model for separated flows of an incompressible fluid. We show that it satisfies the hypotheses of our theorem and has a non-empty spectrum.
Keywords: elliptic boundary-value problem, problem with parameter, discontinuous non-linearity, iterative process, minimal solution, semiregular solution, spectrum, Gol'dshtik model.
@article{IM2_2020_84_3_a4,
     author = {V. N. Pavlenko and D. K. Potapov},
     title = {On a~class of~elliptic boundary-value problems with parameter and discontinuous non-linearity},
     journal = {Izvestiya. Mathematics },
     pages = {592--607},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a4/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - D. K. Potapov
TI  - On a~class of~elliptic boundary-value problems with parameter and discontinuous non-linearity
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 592
EP  - 607
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a4/
LA  - en
ID  - IM2_2020_84_3_a4
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A D. K. Potapov
%T On a~class of~elliptic boundary-value problems with parameter and discontinuous non-linearity
%J Izvestiya. Mathematics 
%D 2020
%P 592-607
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a4/
%G en
%F IM2_2020_84_3_a4
V. N. Pavlenko; D. K. Potapov. On a~class of~elliptic boundary-value problems with parameter and discontinuous non-linearity. Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 592-607. http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a4/

[1] V. N. Pavlenko, D. K. Potapov, “The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities”, Sb. Math., 206:9 (2015), 1281–1298 | DOI | DOI | MR | Zbl

[2] V. N. Pavlenko, D. K. Potapov, “Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity”, Siberian Adv. Math., 27:1 (2017), 16–25 | DOI | DOI | MR | Zbl

[3] G. Barletta, A. Chinnì, D. O'Regan, “Existence results for a Neumann problem involving the $p(x)$-Laplacian with discontinuous nonlinearities”, Nonlinear Anal. Real World Appl., 27 (2016), 312–325 | DOI | MR | Zbl

[4] S. Bensid, “Perturbation of the free boundary in elliptic problem with discontinuities”, Electron. J. Differential Equations, 2016 (2016), 132, 14 pp. | MR | Zbl

[5] R. Dhanya, S. Prashanth, S. Tiwari, K. Sreenadh, “Elliptic problems in $\mathbb{R}^N$ with critical and singular discontinuous nonlinearities”, Complex Var. Elliptic Equ., 61:12 (2016), 1656–1676 | DOI | MR | Zbl

[6] V. N. Pavlenko, D. K. Potapov, “Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides”, Sb. Math., 208:1 (2017), 157–172 | DOI | DOI | MR | Zbl

[7] V. N. Pavlenko, D. K. Potapov, “Existence of three nontrivial solutions of an elliptic boundary-value problem with discontinuous nonlinearity in the case of strong resonance”, Math. Notes, 101:2 (2017), 284–296 | DOI | DOI | MR | Zbl

[8] V. N. Pavlenko, D. K. Potapov, “Estimates for a spectral parameter in elliptic boundary value problems with discontinuous nonlinearities”, Siberian Math. J., 58:2 (2017), 288–295 | DOI | DOI | MR | Zbl

[9] G. C. G. Santos, G. M. Figueiredo, “Existence of solutions for an NSE with discontinuous nonlinearity”, J. Fixed Point Theory Appl., 19:1 (2017), 917–937 | DOI | MR | Zbl

[10] S. Heidarkhani, F. Gharehgazlouei, “Multiplicity of elliptic equations involving the $p$-Laplacian with discontinuous nonlinearities”, Complex Var. Elliptic Equ., 62:3 (2017), 413–429 | DOI | MR | Zbl

[11] D. K. Potapov, “On solutions to the Goldshtik problem”, Num. Anal. Appl., 5:4 (2012), 342–347 | DOI | Zbl

[12] D. K. Potapov, V. V. Yevstafyeva, “Lavrent'ev problem for separated flows with an external perturbation”, Electron. J. Differential Equations, 2013 (2013), 255, 6 pp. | MR | Zbl

[13] Y. Zhang, I. Danaila, “Existence and numerical modelling of vortex rings with elliptic boundaries”, Appl. Math. Model., 37:7 (2013), 4809–4824 | DOI | MR | Zbl

[14] D. K. Potapov, “On one problem of electrophysics with discontinuous nonlinearity”, Differ. Equ., 50:3 (2014), 419–422 | DOI | DOI | MR | Zbl

[15] V. N. Pavlenko, D. K. Potapov, “Elenbaas problem of electric arc discharge”, Math. Notes, 103:1 (2018), 89–95 | DOI | DOI | MR | Zbl

[16] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl

[17] M. A. Gol'dštik, “A mathematical model of separated flows in an incompressible liquid”, Soviet Phys. Dokl., 7 (1963), 1090–1093 | Zbl

[18] A. V. Vasin, “Prilozhenie zadachi Goldshtika k raschetu gidrodinamicheskikh nagruzok na gidrozatvory obvodnykh galerei”, Rechnoi transport (XXI vek), 2013, no. 2(61), 69–73

[19] I. I. Vainshtein, I. M. Fedotova, “Zadacha Goldshtika o skleike vikhrevykh techenii idealnoi zhidkosti v osesimmetricheskom sluchae”, Vestn. SibGAU, 2014, no. 3(55), 48–54

[20] O. A. Timofeeva, “Analiz chislennykh metodov rascheta techeniya zhidkosti v vodopropusknykh sooruzheniyakh”, Vestn. gos. un-ta morskogo i rechnogo flota im. adm. S. O. Makarova, 2015, no. 4, 104–108

[21] C. Miranda, Equazioni alle derivate parziali di tipo ellittico, Ergeb. Math. Grenzgeb. (N.F.), 2, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955, viii+222 pp. | MR | Zbl

[22] V. N. Pavlenko, “The existence of solutions for nonlinear equations with discontinuous monotone operators”, Moscow Univ. Math. Bull., 28:6 (1974), 70–77 | MR | Zbl

[23] C. A. Stuart, “Maximal and minimal solutions of elliptic differential equations with discontinuous non-linearities”, Math. Z., 163:3 (1978), 239–249 | DOI | MR | Zbl

[24] S. Heikkilä, “On an elliptic boundary value problems with discontinuous nonlinearity”, Appl. Anal., 37:1-4 (1990), 183–189 | DOI | MR | Zbl

[25] S. Carl, “A combined variational-monotone iterative method for elliptic boundary value problems with discontinuous nonlinearity”, Appl. Anal., 43:1-2 (1992), 21–45 | DOI | MR | Zbl

[26] S. Carl, S. Heikkilä, “On extremal solutions of an elliptic boundary value problem involving discontinuous nonlinearities”, Differential Integral Equations, 5:3 (1992), 581–589 | MR | Zbl

[27] S. Heikkilä, V. Lakshmikantham, Monotone iterative techniques for discontinuous nonlinear differential equations, Monogr. Textbooks Pure Appl. Math., 181, Marcel Dekker, Inc., New York, 1994, xii+514 pp. | MR | Zbl

[28] P. Nistri, “Positive solutions of a non-linear eigenvalue problem with discontinuous non-linearity”, Proc. Roy. Soc. Edinburgh Sect. A, 83:1-2 (1979), 133–145 | DOI | MR | Zbl

[29] D. K. Potapov, “Continuous approximation for a 1D analog of the Gol'dshtik model for separated flows of an incompressible fluid”, Num. Anal. Appl., 4:3 (2011), 234–238 | DOI | Zbl

[30] S. Bensid, J. I. Díaz, “Stability results for discontinuous nonlinear elliptic and parabolic problems with a $S$-shaped bifurcation branch of stationary solutions”, Discrete Contin. Dyn. Syst. Ser. B, 22:5 (2017), 1757–1778 | DOI | MR | Zbl

[31] I. V. Shragin, “Conditions for measurability of superpositions”, Soviet Math. Dokl., 12 (1971), 465–470 | MR | Zbl

[32] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl

[33] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, Systems with hysteresis, Springer-Verlag, Berlin, 1989, xviii+410 pp. | DOI | MR | MR | Zbl | Zbl

[34] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl

[35] V. N. Pavlenko, O. V. Ul'yanova, “The method of upper and lower solutions for equations of elliptic type with discontinuous nonlinearities”, Russian Math. (Iz. VUZ), 42:11 (1998), 65–72 | MR | Zbl

[36] H. Amann, “Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces”, SIAM Rev., 18:4 (1976), 620–709 | DOI | MR | Zbl

[37] M. A. Krasnosel'skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964, 381 pp. | MR | MR | Zbl | Zbl