On the arithmetic of~modified id\`ele class groups
Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 545-591.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a number field and $S$, $T$ sets of places of $k$. For each prime $p$, we define an invariant $\mathscr{G}=\mathscr{G}_p(k_\infty/k,S,T)$ related to the Galois group of the maximal abelian extension of $k$ which is unramified outside $S$ and splits completely in $T$. In the main theorem we interpret $\mathscr{G}$ in terms of another arithmetic object $\mathscr{U}$ that involves various unit groups and uses genus theory applied to certain modules, which are technically modified from idèle groups. We show that this interpretation is functorial with respect to $S$ and $T$ and thereby provides interesting connections between $\mathscr{G}$ and $\mathscr{U}$ as $S$ and $T$ vary. The settings and methods are new, and different from the classical genus theoretic methods for idèle groups. The advantage of the new methods at the finite level not only generalizes but also strengthens certain known results involving the maximal $p$-abelian profinite Galois group of $k$ that is $S$-ramified and $T$-split in terms of the arithmetic of certain units of $k$. At the infinite level, the method relates the deep arithmetic of special units with those of profinite Galois groups. For example, for special cases of $S$ and $T$, the invariants $\mathscr{G}$ are related to the conjectures of Gross (or Kuz'min–Gross) and Leopoldt and accordingly, in these special cases, the functorial interpretation of $\mathscr{G}$ as $S$ and $T$ vary involves interesting connections between the conjectures of Gross and Leopoldt in a simpler and more concrete way. As a result, we conjecture that $\mathscr{G}$ is finite for all finite disjoint sets $S$, $T$ over the cyclotomic $\mathbb{Z}_p$-tower of $k$, which includes the conjectures of Gross and Leopoldt as special cases.
Keywords: Leopoldt conjecture, cyclotomic $\mathbb{Z}_p$-extension, universal norm elements, Iwasawa modules.
Mots-clés : Kuz'min–Gross conjecture
@article{IM2_2020_84_3_a3,
     author = {W. Lee and S. Seo},
     title = {On the arithmetic of~modified id\`ele class groups},
     journal = {Izvestiya. Mathematics },
     pages = {545--591},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a3/}
}
TY  - JOUR
AU  - W. Lee
AU  - S. Seo
TI  - On the arithmetic of~modified id\`ele class groups
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 545
EP  - 591
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a3/
LA  - en
ID  - IM2_2020_84_3_a3
ER  - 
%0 Journal Article
%A W. Lee
%A S. Seo
%T On the arithmetic of~modified id\`ele class groups
%J Izvestiya. Mathematics 
%D 2020
%P 545-591
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a3/
%G en
%F IM2_2020_84_3_a3
W. Lee; S. Seo. On the arithmetic of~modified id\`ele class groups. Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 545-591. http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a3/

[1] C. D. González-Avilés, “Capitulation, ambiguous classes and the cohomology of units”, J. Reine Angew. Math., 2007:613 (2007), 75–97 | DOI | MR | Zbl

[2] G. Gras, “Groupe de Galois de la $p$-extension abélienne $p$-ramifiée maximale d'un corps de nombres”, J. Reine Angew. Math., 1982:333 (1982), 86–132 | DOI | MR | Zbl

[3] G. Gras, Class field theory. From theory to practice, Springer Monogr. Math., Springer-Verlag, Berlin, 2003, xiv+491 pp. | DOI | MR | Zbl

[4] L. V. Kuz'min, “The Tate module for algebraic number fields”, Math. USSR-Izv., 6:2 (1972), 263–321 | DOI | MR | Zbl

[5] B. Gross, “$p$-adic $L$-series at $s = 0$”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28:3 (1981), 979–994 | MR | Zbl

[6] K. Iwasawa, “On cohomology groups of units for $\mathbf Z_p$-extensions”, Amer. J. Math., 105:1 (1983), 189–200 | DOI | MR | Zbl

[7] L. V. Kuz'min, “On formulae for the class number of real Abelian fields”, Izv. Math., 60:4 (1996), 695–761 | DOI | DOI | MR | Zbl

[8] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of number fields, Grundlehren Math. Wiss., 323, 2nd ed., Springer-Verlag, Berlin, 2008, xvi+825 pp. | DOI | MR | Zbl

[9] N. Burbaki, Obschaya topologiya. Osnovnye struktury, Elementy matematiki, Nauka, M., 1968, 272 pp. ; Общая топология. Топологические группы. Числа и связанные с ними группы и пространства, 1969 ; N. Bourbaki, Éléments de mathématique, Fasc. II, III. Première partie. Livre III: Topologie générale. Ch. 1, 2, 3, 4, Actualités Sci. Indust., 1142, 1143, 3-éme éd., Hermann, Paris, 1960, 1961, 263 pp., 236 pp. ; N. Bourbaki, Elements of mathematics. General topology, Part 1, Hermann, Paris; Addison-Wesley Publishing Co., Reading, MA–London–Don Mills, ON, 1966, vii+437 с. | MR | Zbl | MR | Zbl | MR | MR | Zbl | MR | Zbl

[10] J.-F. Jaulent, L'arithmétique des $\ell$-extensions, Thèse de doctorat d'etat en mathématiques, Publ. Math. Fac. Sci. Besançon, Théorie des nombres. Fasc. 1. 1984–1986, Univ. Franche-Comté, Besançon, 1986, viii+349 pp. http://pmb.univ-fcomte.fr/1986.html | MR | Zbl

[11] J.-F. Jaulent, “Théorie $\ell$-adique globale du corps de classes”, J. Théor. Nombres Bordeaux, 10:2 (1998), 355–397 | DOI | MR | Zbl

[12] Thong Nguyen-Quang-Do, “Sur la $\mathbb{Z}_p$-torsion de certains modules galoisiens”, Ann. Inst. Fourier (Grenoble), 36:2 (1986), 27–46 | DOI | MR | Zbl

[13] M. Karoubi, T. Lambre, “Sur la $K$-théorie du foncteur norme”, J. Algebra, 321:10 (2009), 2754–2781 | DOI | MR | Zbl

[14] K. Iwasawa, “On $\mathbf Z_{l}$-extensions of algebraic number fields”, Ann. of Math. (2), 98:2 (1973), 246–326 | DOI | MR | Zbl

[15] A. Brumer, “On the units of algebraic number fields”, Mathematika, 14:2 (1967), 121–124 | DOI | MR | Zbl

[16] R. Greenberg, “On the structure of certain Galois groups”, Invent. Math., 47:1 (1978), 85–99 | DOI | MR | Zbl

[17] S. Seo, On the universal norm elements of a number field, preprint, Yonsei University, Seoul, 2020

[18] N. Burbaki, Kommutativnaya algebra, Elementy matematiki, M., Mir, 1971, 708 pp. ; N. Bourbaki, Éléments de mathématique, Fasc. XXVII, XXVIII, XXX, XXXI. Algèbre commutative, Actualités Sci. Indust., 1290, 1293, 1308, 1314, Hermann, Paris, 1961–1965, 187 pp., 183 pp., 207 pp., iii+146 pp. ; N. Bourbaki, Elements of mathematics. Commutative algebra, Hermann, Paris; Addison-Wesley Publishing Co., Reading, MA, 1972, xxiv+625 с. | MR | Zbl | MR | MR | MR | MR | Zbl | MR | Zbl

[19] M. Kolster, “An idelic approach to the wild kernel”, Invent. Math., 103:1 (1991), 9–24 | DOI | MR | Zbl

[20] J.-F. Jaulent, “Classes logarithmiques des corps de nombres”, J. Théor. Nombres Bordeaux, 6:2 (1994), 301–325 | DOI | MR | Zbl

[21] J.-F. Jaulent, “Classes logarithmiques des corps totalement réels”, Acta Arith., 103:1 (2002), 1–7 | DOI | MR | Zbl

[22] S. Seo, “On the conjectures of Gross and Leopoldt”, Math. Res. Lett., 22:5 (2015), 1509–1540 | DOI | MR | Zbl

[23] P. Schneider, “Über gewisse Galoiskohomologiegruppen”, Math. Z., 168:2 (1979), 181–205 | DOI | MR | Zbl