Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_3_a2, author = {V. A. Krasnov}, title = {Real {Segre} cubics, {Igusa} quartics and {Kummer} quartics}, journal = {Izvestiya. Mathematics }, pages = {502--544}, publisher = {mathdoc}, volume = {84}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a2/} }
V. A. Krasnov. Real Segre cubics, Igusa quartics and Kummer quartics. Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 502-544. http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a2/
[1] C. Segre, “Sulla varietà cubica con dieci punti doppi dello spazio a quattro dimensioni”, Atti R. Accad. Sci. Torino, XXII (1887), 791–801 | Zbl
[2] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl
[3] B. Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Math., 1637, Springer-Verlag, Berlin, 1996, xiv+332 pp. | DOI | MR | Zbl
[4] B. Hunt, “Nice modular varieties”, Experiment. Math., 9:4 (2000), 613–622 | DOI | MR | Zbl
[5] V. A. Krasnov, “Veschestvennye kummerovy kvartiki i ikh geizenberg-invariantnost”, Izv. RAN. Ser. matem., 84:1 (2020), 105–162 | DOI
[6] H. Finkelnberg, “Small resolutions of the Segre cubic”, Nederl. Akad. Wetensch. Indag. Math., 90:3 (1987), 261–277 | DOI | MR | Zbl
[7] G. Chilov, Analyse mathématique. Fonctions de plusieurs variables réelles, 1-ere et 2-ere parties, Moscou, Éditions Mir, 1975, 552 pp. | Zbl | Zbl
[8] K. Rohn, “Die verschiedenen Gestalten der Kummer'schen Fläche”, Math. Ann., 18:1 (1881), 99–159 | DOI | MR | Zbl
[9] R. W. H. T. Hudson, Kummer's quartic surface, Cambridge Univ. Press, Cambridge, 1905, xi+219 pp. ; rev. reprint with a foreword by W. Barth: Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1990, xxiv+222 pp. | Zbl | MR | Zbl
[10] H. F. Baker, Principles of geometry, v. 4, Cambridge Univ. Press, Cambridge, 1940, xvi+274 pp.
[11] M. R. Gonzalez-Dorrego, $(16,6)$ configurations and geometry of Kummer surfaces in $\mathbb{P}^3$, Mem. Amer. Math. Soc., 107, no. 512, Amer. Math. Soc., Providence, RI, 1994, vi+101 pp. | DOI | MR | Zbl
[12] I. Nieto, “The singular $H_{2,2}$-invariant quartic surfaces in $\mathbb{P}_3$”, Geom. Dedicata, 57:2 (1995), 157–170 | DOI | MR | Zbl
[13] I. Nieto, “The normalizer of the level $(2,2)$-Heisenberg group”, Manuscripta Math., 76:3-4 (1992), 257–267 | DOI | MR | Zbl
[14] W. Fulton, J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991, xvi+551 pp. | DOI | MR | Zbl
[15] R. T. Rockafellar, Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, N.J., 1970, xviii+451 pp. | MR | Zbl | Zbl
[16] Göttingen collection of mathematical models and instruments http://modellsammlung.uni-goettingen.de