Real Segre cubics, Igusa quartics and Kummer quartics
Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 502-544.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove some properties of real Segre cubics. In particular, we find the topological types of the real parts of Segre cubics as well as the topological types of the real parts of the complements of the Segre planes. We prove some differential-geometric properties of the real parts of real Segre cubics and Kummer quartics. We study the automorphism groups of real Segre cubics and, in particular, their action on the real parts of these cubics.
Keywords: Segre cubic, translation group, quadratic line complex.
Mots-clés : Kummer quartic, permutation group, Igusa quartic
@article{IM2_2020_84_3_a2,
     author = {V. A. Krasnov},
     title = {Real {Segre} cubics, {Igusa} quartics and {Kummer} quartics},
     journal = {Izvestiya. Mathematics },
     pages = {502--544},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a2/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Real Segre cubics, Igusa quartics and Kummer quartics
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 502
EP  - 544
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a2/
LA  - en
ID  - IM2_2020_84_3_a2
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Real Segre cubics, Igusa quartics and Kummer quartics
%J Izvestiya. Mathematics 
%D 2020
%P 502-544
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a2/
%G en
%F IM2_2020_84_3_a2
V. A. Krasnov. Real Segre cubics, Igusa quartics and Kummer quartics. Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 502-544. http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a2/

[1] C. Segre, “Sulla varietà cubica con dieci punti doppi dello spazio a quattro dimensioni”, Atti R. Accad. Sci. Torino, XXII (1887), 791–801 | Zbl

[2] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl

[3] B. Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Math., 1637, Springer-Verlag, Berlin, 1996, xiv+332 pp. | DOI | MR | Zbl

[4] B. Hunt, “Nice modular varieties”, Experiment. Math., 9:4 (2000), 613–622 | DOI | MR | Zbl

[5] V. A. Krasnov, “Veschestvennye kummerovy kvartiki i ikh geizenberg-invariantnost”, Izv. RAN. Ser. matem., 84:1 (2020), 105–162 | DOI

[6] H. Finkelnberg, “Small resolutions of the Segre cubic”, Nederl. Akad. Wetensch. Indag. Math., 90:3 (1987), 261–277 | DOI | MR | Zbl

[7] G. Chilov, Analyse mathématique. Fonctions de plusieurs variables réelles, 1-ere et 2-ere parties, Moscou, Éditions Mir, 1975, 552 pp. | Zbl | Zbl

[8] K. Rohn, “Die verschiedenen Gestalten der Kummer'schen Fläche”, Math. Ann., 18:1 (1881), 99–159 | DOI | MR | Zbl

[9] R. W. H. T. Hudson, Kummer's quartic surface, Cambridge Univ. Press, Cambridge, 1905, xi+219 pp. ; rev. reprint with a foreword by W. Barth: Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1990, xxiv+222 pp. | Zbl | MR | Zbl

[10] H. F. Baker, Principles of geometry, v. 4, Cambridge Univ. Press, Cambridge, 1940, xvi+274 pp.

[11] M. R. Gonzalez-Dorrego, $(16,6)$ configurations and geometry of Kummer surfaces in $\mathbb{P}^3$, Mem. Amer. Math. Soc., 107, no. 512, Amer. Math. Soc., Providence, RI, 1994, vi+101 pp. | DOI | MR | Zbl

[12] I. Nieto, “The singular $H_{2,2}$-invariant quartic surfaces in $\mathbb{P}_3$”, Geom. Dedicata, 57:2 (1995), 157–170 | DOI | MR | Zbl

[13] I. Nieto, “The normalizer of the level $(2,2)$-Heisenberg group”, Manuscripta Math., 76:3-4 (1992), 257–267 | DOI | MR | Zbl

[14] W. Fulton, J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991, xvi+551 pp. | DOI | MR | Zbl

[15] R. T. Rockafellar, Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, N.J., 1970, xviii+451 pp. | MR | Zbl | Zbl

[16] Göttingen collection of mathematical models and instruments http://modellsammlung.uni-goettingen.de