Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_3_a1, author = {M. O. Korpusov and E. A. Ovsyannikov}, title = {Blow-up instability in non-linear wave models with distributed parameters}, journal = {Izvestiya. Mathematics }, pages = {449--501}, publisher = {mathdoc}, volume = {84}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a1/} }
TY - JOUR AU - M. O. Korpusov AU - E. A. Ovsyannikov TI - Blow-up instability in non-linear wave models with distributed parameters JO - Izvestiya. Mathematics PY - 2020 SP - 449 EP - 501 VL - 84 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a1/ LA - en ID - IM2_2020_84_3_a1 ER -
M. O. Korpusov; E. A. Ovsyannikov. Blow-up instability in non-linear wave models with distributed parameters. Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 449-501. http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a1/
[1] D. Ch. Kim, “Videosolitony v dispersnoi linii peredachi s nelineinoi emkostyu $p-n$-perekhoda”, Zhurn. tekh. fiz., 83:3 (2013), 31–40
[2] V. M. Zhuravlev, “Autowaves in double-wire lines with the exponential-type nonlinear active element”, JETP Letters, 75:1 (2002), 9–14 | DOI
[3] M. O. Korpusov, “Solution blowup for nonlinear equations of the Khokhlov–Zabolotskaya type”, Theoret. and Math. Phys., 194:3 (2018), 347–359 | DOI | DOI | MR | Zbl
[4] V. M. Zhuravlev, “Multidimensional nonlinear wave equations with multivalued solutions”, Theoret. and Math. Phys., 174:2 (2013), 236–246 | DOI | DOI | MR | Zbl
[5] M. I. Rabinovich, “Avtokolebaniya raspredelennykh sistem”, Izv. vuzov. Radiofizika, 17:4 (1974), 477–510
[6] M. O. Korpusov, “Destruction of solutions of wave equations in systems with distributed parameters”, Theoret. and Math. Phys., 167:2 (2011), 577–583 | DOI | DOI | MR | Zbl
[7] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, De Gruyter Ser. Nonlinear Anal. Appl., 15, Walter de Gruyter Co., Berlin, 2011, xii+648 pp. | DOI | MR | Zbl
[8] È. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl
[9] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$”, Arch. Rational. Mech. Anal., 51 (1973), 371–386 | DOI | MR | Zbl
[10] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathscr F(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl
[11] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, G. I. Shlyapugin, “On the blow-up phenomena for a 1-dimensional equation of ion sound waves in a plasma: analytical and numerical investigation”, Math. Methods Appl. Sci., 41:8 (2018), 2906–2929 | DOI | MR | Zbl
[12] M. O. Korpusov, D. V. Lukyanenko, “Instantaneous blow-up versus local solvability for one problem of propagation of nonlinear waves in semiconductors”, J. Math. Anal. Appl., 459:1 (2018), 159–181 | DOI | MR | Zbl
[13] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities”, Izv. Math., 82:2 (2018), 283–317 | DOI | DOI | MR | Zbl
[14] A. A. Panin, G. I. Shlyapugin, “Local solvability and solution blow-up of one-dimensional equations of the Yajima–Oikawa–Satsuma type”, Theoret. and Math. Phys., 193:2 (2017), 1561–1573 | DOI | DOI | MR | Zbl
[15] M. O. Korpusov, A. A. Panin, “On the nonextendable solution and blow-up of the solution of the one-dimensional equation of ion-sound waves in a plasma”, Math. Notes, 102:3 (2017), 350–360 | DOI | DOI | MR | Zbl
[16] M. O. Korpusov, D. V. Lukyanenko, E. A. Ovsyannikov, A. A. Panin, “Lokalnaya razreshimost i razrushenie resheniya odnogo uravneniya s kvadratichnoi nekoertsitivnoi nelineinostyu”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:2 (2017), 107–123 | Zbl
[17] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis”, Math. Methods Appl. Sci., 40:7 (2017), 2336–2346 | DOI | MR | Zbl
[18] D. V. Lukyanenko, A. A. Panin, “Razrushenie resheniya uravneniya stratifikatsii ob'emnogo zaryada v poluprovodnikakh: chislennyi analiz pri svedenii iskhodnogo uravneniya k differentsialno-algebraicheskoi sisteme”, Vych. met. programmirovanie, 17:4 (2016), 437–446
[19] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up for one Sobolev problem: theoretical approach and numerical analysis”, J. Math. Anal. Appl., 442:2 (2016), 451–468 | DOI | MR | Zbl
[20] A. A. Panin, “On local solvability and blow-up of solutions of an abstract nonlinear Volterra integral equation”, Math. Notes, 97:6 (2015), 892–908 | DOI | DOI | MR | Zbl
[21] M. O. Korpusov, A. A. Panin, “Blow-up of solutions of an abstract Cauchy problem for a formally hyperbolic equation with double non-linearity”, Izv. Math., 78:5 (2014), 937–985 | DOI | DOI | MR | Zbl
[22] A. A. Panin, “Local solvability and blowup of the solution of the Rosenau–Bürgers equation with different boundary conditions”, Theoret. and Math. Phys., 177:1 (2013), 1361–1376 | DOI | DOI | MR | Zbl
[23] M. O. Korpusov, A. A. Panin, “Local solvability and solution blowup for the Benjamin–Bona–Mahony–Burgers equation with a nonlocal boundary condition”, Theoret. and Math. Phys., 175:2 (2013), 580–591 | DOI | DOI | MR | Zbl
[24] G. A. Sviridyuk, “On the general theory of operator semigroups”, Russian Math. Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl
[25] S. A. Zagrebina, “Nachalno-konechnaya zadacha dlya uravnenii sobolevskogo tipa s silno $(L,p)$-radialnym operatorom”, Mat. zametki YaGU, 19:2 (2012), 39–48 | Zbl
[26] A. A. Zamyshlyaeva, G. A. Sviridyuk, “Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:4 (2016), 5–16 | Zbl
[27] S. A. Gabov, B. B. Orazov, “The equation $\frac{\partial^2}{\partial t^2}[u_{xx}-u]+u_{xx}=0$ and several problems associated with it”, U.S.S.R. Comput. Math. Math. Phys., 26:1 (1986), 58–64 | DOI | MR | Zbl
[28] B. V. Kapitonov, “Potential theory for the equation of small oscillations of a rotating fluid”, Math. USSR-Sb., 37:4 (1980), 559–579 | DOI | MR | Zbl
[29] S. A. Gabov, A. G. Sveshnikov, Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990, 344 pp. | MR | Zbl
[30] S. A. Gabov, Novye zadachi matematicheskoi teorii voln, Fizmatlit, M., 1998, 448 pp. | Zbl
[31] Yu. D. Pletner, “Fundamental solutions of Sobolev-type operators and some initial boundary-value problems”, Comput. Math. Math. Phys., 32:12 (1992), 1715–1728 | MR | Zbl