Blow-up instability in non-linear wave models with distributed parameters
Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 449-501.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two model non-linear equations describing electric oscillations in systems with distributed parameters on the basis of diodes with non-linear characteristics. We obtain equivalent integral equations for classical solutions of the Cauchy problem and the first and second initial-boundary value problems for the original equations in the half-space $x>0$. Using the contraction mapping principle, we prove the local-in-time solubility of these problems. For one of these equations, we use the Pokhozhaev method of non-linear capacity to deduce a priori bounds giving rise to finite-time blow-up results and obtain upper bounds for the blow-up time. For the other, we use a modification of Levine's method to obtain sufficient conditions for blow-up in the case of sufficiently large initial data and give a lower bound for the order of growth of a functional with the meaning of energy. We also obtain an upper bound for the blow-up time.
Keywords: non-linear equations of Sobolev type, blow-up, local solubility, non-linear capacity, bounds for the blow-up time.
Mots-clés : destruction
@article{IM2_2020_84_3_a1,
     author = {M. O. Korpusov and E. A. Ovsyannikov},
     title = {Blow-up instability in non-linear wave models with distributed parameters},
     journal = {Izvestiya. Mathematics },
     pages = {449--501},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a1/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - E. A. Ovsyannikov
TI  - Blow-up instability in non-linear wave models with distributed parameters
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 449
EP  - 501
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a1/
LA  - en
ID  - IM2_2020_84_3_a1
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A E. A. Ovsyannikov
%T Blow-up instability in non-linear wave models with distributed parameters
%J Izvestiya. Mathematics 
%D 2020
%P 449-501
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a1/
%G en
%F IM2_2020_84_3_a1
M. O. Korpusov; E. A. Ovsyannikov. Blow-up instability in non-linear wave models with distributed parameters. Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 449-501. http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a1/

[1] D. Ch. Kim, “Videosolitony v dispersnoi linii peredachi s nelineinoi emkostyu $p-n$-perekhoda”, Zhurn. tekh. fiz., 83:3 (2013), 31–40

[2] V. M. Zhuravlev, “Autowaves in double-wire lines with the exponential-type nonlinear active element”, JETP Letters, 75:1 (2002), 9–14 | DOI

[3] M. O. Korpusov, “Solution blowup for nonlinear equations of the Khokhlov–Zabolotskaya type”, Theoret. and Math. Phys., 194:3 (2018), 347–359 | DOI | DOI | MR | Zbl

[4] V. M. Zhuravlev, “Multidimensional nonlinear wave equations with multivalued solutions”, Theoret. and Math. Phys., 174:2 (2013), 236–246 | DOI | DOI | MR | Zbl

[5] M. I. Rabinovich, “Avtokolebaniya raspredelennykh sistem”, Izv. vuzov. Radiofizika, 17:4 (1974), 477–510

[6] M. O. Korpusov, “Destruction of solutions of wave equations in systems with distributed parameters”, Theoret. and Math. Phys., 167:2 (2011), 577–583 | DOI | DOI | MR | Zbl

[7] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, De Gruyter Ser. Nonlinear Anal. Appl., 15, Walter de Gruyter Co., Berlin, 2011, xii+648 pp. | DOI | MR | Zbl

[8] È. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl

[9] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$”, Arch. Rational. Mech. Anal., 51 (1973), 371–386 | DOI | MR | Zbl

[10] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathscr F(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl

[11] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, G. I. Shlyapugin, “On the blow-up phenomena for a 1-dimensional equation of ion sound waves in a plasma: analytical and numerical investigation”, Math. Methods Appl. Sci., 41:8 (2018), 2906–2929 | DOI | MR | Zbl

[12] M. O. Korpusov, D. V. Lukyanenko, “Instantaneous blow-up versus local solvability for one problem of propagation of nonlinear waves in semiconductors”, J. Math. Anal. Appl., 459:1 (2018), 159–181 | DOI | MR | Zbl

[13] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities”, Izv. Math., 82:2 (2018), 283–317 | DOI | DOI | MR | Zbl

[14] A. A. Panin, G. I. Shlyapugin, “Local solvability and solution blow-up of one-dimensional equations of the Yajima–Oikawa–Satsuma type”, Theoret. and Math. Phys., 193:2 (2017), 1561–1573 | DOI | DOI | MR | Zbl

[15] M. O. Korpusov, A. A. Panin, “On the nonextendable solution and blow-up of the solution of the one-dimensional equation of ion-sound waves in a plasma”, Math. Notes, 102:3 (2017), 350–360 | DOI | DOI | MR | Zbl

[16] M. O. Korpusov, D. V. Lukyanenko, E. A. Ovsyannikov, A. A. Panin, “Lokalnaya razreshimost i razrushenie resheniya odnogo uravneniya s kvadratichnoi nekoertsitivnoi nelineinostyu”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:2 (2017), 107–123 | Zbl

[17] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis”, Math. Methods Appl. Sci., 40:7 (2017), 2336–2346 | DOI | MR | Zbl

[18] D. V. Lukyanenko, A. A. Panin, “Razrushenie resheniya uravneniya stratifikatsii ob'emnogo zaryada v poluprovodnikakh: chislennyi analiz pri svedenii iskhodnogo uravneniya k differentsialno-algebraicheskoi sisteme”, Vych. met. programmirovanie, 17:4 (2016), 437–446

[19] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up for one Sobolev problem: theoretical approach and numerical analysis”, J. Math. Anal. Appl., 442:2 (2016), 451–468 | DOI | MR | Zbl

[20] A. A. Panin, “On local solvability and blow-up of solutions of an abstract nonlinear Volterra integral equation”, Math. Notes, 97:6 (2015), 892–908 | DOI | DOI | MR | Zbl

[21] M. O. Korpusov, A. A. Panin, “Blow-up of solutions of an abstract Cauchy problem for a formally hyperbolic equation with double non-linearity”, Izv. Math., 78:5 (2014), 937–985 | DOI | DOI | MR | Zbl

[22] A. A. Panin, “Local solvability and blowup of the solution of the Rosenau–Bürgers equation with different boundary conditions”, Theoret. and Math. Phys., 177:1 (2013), 1361–1376 | DOI | DOI | MR | Zbl

[23] M. O. Korpusov, A. A. Panin, “Local solvability and solution blowup for the Benjamin–Bona–Mahony–Burgers equation with a nonlocal boundary condition”, Theoret. and Math. Phys., 175:2 (2013), 580–591 | DOI | DOI | MR | Zbl

[24] G. A. Sviridyuk, “On the general theory of operator semigroups”, Russian Math. Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl

[25] S. A. Zagrebina, “Nachalno-konechnaya zadacha dlya uravnenii sobolevskogo tipa s silno $(L,p)$-radialnym operatorom”, Mat. zametki YaGU, 19:2 (2012), 39–48 | Zbl

[26] A. A. Zamyshlyaeva, G. A. Sviridyuk, “Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:4 (2016), 5–16 | Zbl

[27] S. A. Gabov, B. B. Orazov, “The equation $\frac{\partial^2}{\partial t^2}[u_{xx}-u]+u_{xx}=0$ and several problems associated with it”, U.S.S.R. Comput. Math. Math. Phys., 26:1 (1986), 58–64 | DOI | MR | Zbl

[28] B. V. Kapitonov, “Potential theory for the equation of small oscillations of a rotating fluid”, Math. USSR-Sb., 37:4 (1980), 559–579 | DOI | MR | Zbl

[29] S. A. Gabov, A. G. Sveshnikov, Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990, 344 pp. | MR | Zbl

[30] S. A. Gabov, Novye zadachi matematicheskoi teorii voln, Fizmatlit, M., 1998, 448 pp. | Zbl

[31] Yu. D. Pletner, “Fundamental solutions of Sobolev-type operators and some initial boundary-value problems”, Comput. Math. Math. Phys., 32:12 (1992), 1715–1728 | MR | Zbl