On the rate of~approximation in the unit disc of~$H^1$-functions by logarithmic derivatives of~polynomials with zeros on the boundary
Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 437-448.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study uniform approximation in the open unit disc $D=\{z\colon |z|1\}$ by logarithmic derivatives of $C$-polynomials, that is, polynomials whose zeros lie on the unit circle $C=\{z\colon |z|\,{=}\,1\}$. We find bounds for the rate of approximation for functions in Hardy class $H^1(D)$ and certain subclasses. We prove bounds for the rate of uniform approximation (either in $D$ or its closure) by $h$-sums $\sum_k \lambda_k h(\lambda_k z)$ with parameters $\lambda_k\in C$.
Keywords: logarithmic derivative, simple partial fraction, uniform approximation, $h$-sum.
Mots-clés : $C$-polynomial
@article{IM2_2020_84_3_a0,
     author = {M. A. Komarov},
     title = {On the rate of~approximation in the unit disc of~$H^1$-functions by logarithmic derivatives of~polynomials with zeros on the boundary},
     journal = {Izvestiya. Mathematics },
     pages = {437--448},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a0/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - On the rate of~approximation in the unit disc of~$H^1$-functions by logarithmic derivatives of~polynomials with zeros on the boundary
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 437
EP  - 448
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a0/
LA  - en
ID  - IM2_2020_84_3_a0
ER  - 
%0 Journal Article
%A M. A. Komarov
%T On the rate of~approximation in the unit disc of~$H^1$-functions by logarithmic derivatives of~polynomials with zeros on the boundary
%J Izvestiya. Mathematics 
%D 2020
%P 437-448
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a0/
%G en
%F IM2_2020_84_3_a0
M. A. Komarov. On the rate of~approximation in the unit disc of~$H^1$-functions by logarithmic derivatives of~polynomials with zeros on the boundary. Izvestiya. Mathematics , Tome 84 (2020) no. 3, pp. 437-448. http://geodesic.mathdoc.fr/item/IM2_2020_84_3_a0/

[1] V. I. Danchenko, D. Ya. Danchenko, “Approximation by simplest fractions”, Math. Notes, 70:4 (2001), 502–507 | DOI | DOI | MR | Zbl

[2] O. N. Kosukhin, “Approximation properties of the most simple fractions”, Moscow Univ. Math. Bull., 56:4 (2001), 36–40 | MR | Zbl

[3] O. N. Kosukhin, O nekotorykh netraditsionnykh metodakh priblizheniya, svyazannykh s kompleksnymi polinomami, Diss. ... kand. fiz.-matem. nauk, Mosk. gos. un-t, M., 2005

[4] V. Yu. Protasov, “Approximation by simple partial fractions and the Hilbert transform”, Izv. Math., 73:2 (2009), 333–349 | DOI | DOI | MR | Zbl

[5] V. I. Danchenko, “Approximation properties of sums of the form $\sum_k\lambda_kh(\lambda_k z)$”, Math. Notes, 83:5 (2008), 587–593 | DOI | DOI | MR | Zbl

[6] P. Chunaev, V. Danchenko, “Approximation by amplitude and frequency operators”, J. Approx. Theory, 207 (2016), 1–31 | DOI | MR | Zbl

[7] M. A. Komarov, “A criterion for the best uniform approximation by simple partial fractions in terms of alternance”, Izv. Math., 79:3 (2015), 431–448 | DOI | DOI | MR | Zbl

[8] V. I. Danchenko, M. A. Komarov, P. V. Chunaev, “Extremal and approximative properties of simple partial fractions”, Russian Math. (Iz. VUZ), 62:12 (2018), 6–41 | DOI | MR | Zbl

[9] J. Korevaar, “Asymptotically neutral distributions of electrons and polynomial approximation”, Ann. of Math. (2), 80:3 (1964), 403–410 | DOI | MR | Zbl

[10] M. Thompson, “Approximation of bounded analytic functions on the disc”, Nieuw Arch. Wisk. (3), 15 (1967), 49–54 | MR | Zbl

[11] Z. Rubinstein, E. B. Saff, “Bounded approximation by polynomials whose zeros lie on a circle”, Proc. Amer. Math. Soc., 29:3 (1971), 482–486 | DOI | MR | Zbl

[12] C. K. Chui, Xie-Chang Shen, “Order of approximation by electrostatic fields due to electrons”, Constr. Approx., 1:1 (1985), 121–135 | DOI | MR | Zbl

[13] P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles. II”, Sb. Math., 207:3 (2016), 331–341 | DOI | DOI | MR | Zbl

[14] N. K. Govil, “On the derivative of a polynomial”, Proc. Amer. Math. Soc., 41:2 (1973), 543–546 | DOI | MR | Zbl

[15] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | MR | Zbl | Zbl

[16] Z. Rubinstein, “On the approximation by $C$-polynomials”, Bull. Amer. Math. Soc., 74:6 (1968), 1091–1093 | DOI | MR | Zbl

[17] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | MR | Zbl | Zbl

[18] P. V. Chunaev, “On a nontraditional method of approximation”, Proc. Steklov Inst. Math., 270 (2010), 278–284 | DOI | MR | Zbl

[19] P. A. Borodin, “Approximation by sums of the form $\sum_k\lambda_kh(\lambda_kz)$ in the disk”, Math. Notes, 104:1 (2018), 3–9 | DOI | DOI | MR | Zbl

[20] P. A. Borodin, “Approximation by sums of shifts of a single function on the circle”, Izv. Math., 81:6 (2017), 1080–1094 | DOI | DOI | MR | Zbl