On $S$-units for valuations of the second degree in hyperelliptic fields
Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 392-435

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose a new effective approach to the problem of finding and constructing non-trivial $S$-units of a hyperelliptic field $L$ for a set $S=S_h$ consisting of two conjugate valuations of the second degree. The results obtained are based on a deep connection between the problem of torsion in the Jacobians of hyperelliptic curves and the quasiperiodicity of continued $h$-fractions, that is, generalized functional continued fractions of special form constructed with respect to a valuation of the second degree. We find algorithms for searching for fundamental $S_h$-units which are comparable in effectiveness with known fast algorithms for two linear valuations.
Keywords: generalized continued fractions, hyperelliptic curves, fundamental $S$-units, divisor class group, torsion group of a Jacobian variety.
@article{IM2_2020_84_2_a7,
     author = {G. V. Fedorov},
     title = {On $S$-units for valuations of the second degree in hyperelliptic fields},
     journal = {Izvestiya. Mathematics },
     pages = {392--435},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a7/}
}
TY  - JOUR
AU  - G. V. Fedorov
TI  - On $S$-units for valuations of the second degree in hyperelliptic fields
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 392
EP  - 435
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a7/
LA  - en
ID  - IM2_2020_84_2_a7
ER  - 
%0 Journal Article
%A G. V. Fedorov
%T On $S$-units for valuations of the second degree in hyperelliptic fields
%J Izvestiya. Mathematics 
%D 2020
%P 392-435
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a7/
%G en
%F IM2_2020_84_2_a7
G. V. Fedorov. On $S$-units for valuations of the second degree in hyperelliptic fields. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 392-435. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a7/