On $S$-units for valuations of the second degree in hyperelliptic fields
Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 392-435.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose a new effective approach to the problem of finding and constructing non-trivial $S$-units of a hyperelliptic field $L$ for a set $S=S_h$ consisting of two conjugate valuations of the second degree. The results obtained are based on a deep connection between the problem of torsion in the Jacobians of hyperelliptic curves and the quasiperiodicity of continued $h$-fractions, that is, generalized functional continued fractions of special form constructed with respect to a valuation of the second degree. We find algorithms for searching for fundamental $S_h$-units which are comparable in effectiveness with known fast algorithms for two linear valuations.
Keywords: generalized continued fractions, hyperelliptic curves, fundamental $S$-units, divisor class group, torsion group of a Jacobian variety.
@article{IM2_2020_84_2_a7,
     author = {G. V. Fedorov},
     title = {On $S$-units for valuations of the second degree in hyperelliptic fields},
     journal = {Izvestiya. Mathematics },
     pages = {392--435},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a7/}
}
TY  - JOUR
AU  - G. V. Fedorov
TI  - On $S$-units for valuations of the second degree in hyperelliptic fields
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 392
EP  - 435
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a7/
LA  - en
ID  - IM2_2020_84_2_a7
ER  - 
%0 Journal Article
%A G. V. Fedorov
%T On $S$-units for valuations of the second degree in hyperelliptic fields
%J Izvestiya. Mathematics 
%D 2020
%P 392-435
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a7/
%G en
%F IM2_2020_84_2_a7
G. V. Fedorov. On $S$-units for valuations of the second degree in hyperelliptic fields. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 392-435. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a7/

[1] V. P. Platonov, “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | DOI | DOI | MR | Zbl

[2] W. W. Adams, M. J. Razar, “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc. (3), 41:3 (1980), 481–498 | DOI | MR | Zbl

[3] V. P. Platonov, G. V. Fedorov, “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559 | DOI | DOI | MR | Zbl

[4] V. P. Platonov, M. M. Petrunin, “$S$-units in hyperelliptic fields and periodicity of continued fractions”, Dokl. Math., 94:2 (2016), 532–537 | DOI | DOI | MR | Zbl

[5] V. P. Platonov, G. V. Fedorov, “$S$-units and periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 92:3 (2015), 752–756 | DOI | DOI | MR | Zbl

[6] V. V. Benyash-Krivets, V. P. Platonov, “Groups of $S$-units in hyperelliptic fields and continued fractions”, Sb. Math., 200:11 (2009), 1587–1615 | DOI | DOI | MR | Zbl

[7] N. H. Abel, “Ueber die Integration der Differential-Formel $\frac{\rho\,dx }{ \sqrt{R}}$, wenn $R$ und $\rho$ ganze Functionen sind”, J. Reine Angew. Math., 1826:1 (1826), 185–221 | DOI | MR | Zbl

[8] P. Tchebichef, “Sur l'intégration de la différentielle $\frac{x+A}{\sqrt{x^4+\alpha x^3+\beta x^2+\gamma x+\delta}}\,dx$”, J. Math. Pures Appl. (2), 9 (1864), 225–241

[9] V. P. Platonov, M. M. Petrunin, “New orders of torsion points in Jacobians of curves of genus 2 over the rational number field”, Dokl. Math., 85:2 (2012), 286–288 | DOI | MR | Zbl

[10] B. Mazur, “Rational points on modular curves”, Modular functions of one variable, V (Univ. Bonn, Bonn, 1976), Lecture Notes in Math., 601, Springer, Berlin, 1977, 107–148 | DOI | MR | Zbl

[11] E. W. Howe, “Genus-2 Jacobians with torsion points of large order”, Bull. Lond. Math. Soc., 47:1 (2015), 127–135 | DOI | MR | Zbl

[12] M. M. Petrunin, “Vychislenie fundamentalnykh $S$-edinits v giperellipticheskikh polyakh roda 2 i problema krucheniya v yakobianakh giperellipticheskikh krivykh”, Chebyshevskii sb., 16:4 (2015), 250–283 | DOI | MR | Zbl

[13] V. P. Platonov, M. M. Petrunin, “Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields”, Proc. Steklov Inst. Math., 302 (2018), 336–357 | DOI | DOI | MR | Zbl

[14] V. P. Platonov, G. V. Fedorov, “On the periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 254–258 | DOI | DOI | MR | Zbl

[15] V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “Continued rational fractions in hyperelliptic fields and the Mumford representation”, Dokl. Math., 94:3 (2016), 692–696 | DOI | DOI | MR | Zbl

[16] V. S. Zhgun, “Obobschennye yakobiany i nepreryvnye drobi v giperellipticheskikh polyakh”, Chebyshevskii sb., 18:4 (2017), 209–221 | DOI | MR

[17] G. V. Fedorov, “Periodicheskie nepreryvnye drobi i $S$-edinitsy s normirovaniyami vtoroi stepeni v giperellipticheskikh polyakh”, Chebyshevskii sb., 19:3 (2018), 282–297 | DOI

[18] S. Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, MA, 1965, xvii+508 pp. | MR | Zbl | Zbl

[19] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988, 448 pp.; D. Mumford, Tata lectures on theta, т. I, Progr. Math., 28, Birkhäuser Boston, Inc., Boston, MA, 1983, xiii+235 с. ; v. II, Progr. Math., 43, 1984, xiv+272 pp. ; v. III, Progr. Math., 97, With the collaboration of M. Nori and P. Norman, 1991, viii+202 pp. | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[20] M. M. Petrunin, “$S$-units and periodicity of square root in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 222–225 | DOI | DOI | MR | Zbl

[21] V. P. Platonov, M. M. Petrunin, “$S$-units and periodicity in quadratic function fields”, Russian Math. Surveys, 71:5 (2016), 973–975 | DOI | DOI | MR | Zbl

[22] V. P. Platonov, G. V. Fedorov, “On the periodicity of continued fractions in elliptic fields”, Dokl. Math., 96:1 (2017), 332–335 | DOI | DOI | MR | Zbl

[23] V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “On the periodicity of continued fractions in hyperelliptic fields over quadratic constant field”, Dokl. Math., 98:2 (2018), 430–434 | DOI | DOI | Zbl

[24] V. P. Platonov, M. M. Petrunin, V. S. Zhgoon, Yu. N. Shteinikov, “On the finiteness of hyperelliptic fields with special properties and periodic expansion of $\sqrt f$”, Dokl. Math., 98:3 (2018), 641–645 | DOI | DOI | Zbl

[25] G. Faltings, “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math., 73:3 (1983), 349–366 | DOI | MR | Zbl