$p$-adic monomial equations and their perturbations
Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 348-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe the set of solutions of the monomial equation $x^k=a$ over $\mathbb Q_p$. Moreover, as an application, we study some perturbations of the equation under consideration over the $p$-adic field.
Keywords: $p$-adic numbers, rational function.
Mots-clés : monomial equation
@article{IM2_2020_84_2_a5,
     author = {F. M. Mukhamedov and O. N. Khakimov},
     title = {$p$-adic monomial equations and their perturbations},
     journal = {Izvestiya. Mathematics },
     pages = {348--360},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a5/}
}
TY  - JOUR
AU  - F. M. Mukhamedov
AU  - O. N. Khakimov
TI  - $p$-adic monomial equations and their perturbations
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 348
EP  - 360
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a5/
LA  - en
ID  - IM2_2020_84_2_a5
ER  - 
%0 Journal Article
%A F. M. Mukhamedov
%A O. N. Khakimov
%T $p$-adic monomial equations and their perturbations
%J Izvestiya. Mathematics 
%D 2020
%P 348-360
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a5/
%G en
%F IM2_2020_84_2_a5
F. M. Mukhamedov; O. N. Khakimov. $p$-adic monomial equations and their perturbations. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 348-360. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a5/

[1] A. Yu. Khrennikov, S. V. Kozyrev, W. A. Zúñiga-Galindo, Ultrametric pseudodifferential equations and applications, Encyclopedia Math. Appl., 168, Cambridge Univ. Press, Cambridge, 2018, xv+237 pp. | DOI | MR | Zbl

[2] S. Albeverio, R. Cianci, A. Yu. Khrennikov, “$p$-adic valued quantization”, $p$-Adic Numbers Ultrametric Anal. Appl., 1:2 (2009), 91–104 | DOI | MR | Zbl

[3] V. Anashin, A. Khrennikov, Applied algebraic dynamics, De Gruyter Exp. Math., 49, Walter de Gruyter Co., Berlin, 2009, xxiv+533 pp. | DOI | MR | Zbl

[4] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, “On $p$-adic mathematical physics”, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl

[5] B. Dragovich, A Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, E. I. Zelenov, “$p$-adic mathematical physics: the first 30 years”, $p$-Adic Numbers Ultrametric Anal. Appl., 9:2 (2017), 87–121 | DOI | MR | Zbl

[6] A. Yu. Khrennikov, Nearkhimedov analiz i ego prilozheniya, Fizmatlit, M., 2003, 216 pp. | MR | Zbl

[7] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adic analysis and mathematical physics, Ser. Soviet East European Math., 1, World Sci. Publ., River Edge, NJ, 1994, xx+319 pp. | DOI | MR | MR | Zbl | Zbl

[8] Z. I. Borevich, I. R. Shafarevich, Number theory, Pure Appl. Math., 20, Academic Press, New York–London, 1966, x+435 pp. | MR | MR | Zbl | Zbl

[9] F. M. Mukhamedov, B. A. Omirov, M. Kh. Saburov, K. K. Masutova, “Solvability of cubic equations in $p$-adic integers ($p>3$)”, Siberian Math. J., 54:3 (2013), 501–516 | DOI | MR | Zbl

[10] F. Mukhamedov, M. Saburov, “On equation $x^q=a$ over $\mathbb Q_p$”, J. Number Theory, 133:1 (2013), 55–58 | DOI | MR | Zbl

[11] J. M. Casas, B. A. Omirov, U. A. Rozikov, “Solvability criteria for the equation $x^q = a$ in the field of $p$-adic numbers”, Bull. Malays. Math. Sci. Soc. (2), 37:3 (2014), 853–863 | MR | Zbl

[12] F. Mukhamedov, “A dynamical system approach to phase transitions for $p$-adic Potts model on the Cayley tree of order two”, Rep. Math. Phys., 70:3 (2012), 385–406 | DOI | MR | Zbl

[13] F. Mukhamedov, O. Khakimov, “Chaotic behavior of the $p$-adic Potts–Bethe mapping”, Discrete Contin. Dyn. Syst., 38:1 (2018), 231–245 | DOI | MR | Zbl

[14] E. Yurova Axelsson, A. Khrennikov, “Generalization of Hensel's lemma: finding the roots of $p$-adic Lipschitz functions”, J. Number Theory, 158 (2016), 217–233 | DOI | MR | Zbl

[15] E. I. Yurova Axelsson, A. Yu. Khrennikov, “Subcoordinate representation of $p$-adic functions and generalization of Hensel's lemma”, Izv. Math., 82:3 (2018), 632–645 | DOI | DOI | MR | Zbl

[16] F. Mukhamedov, “Recurrence equations over trees in a non-Archimedean context”, $p$-Adic Numbers Ultrametric Anal. Appl., 6:4 (2014), 310–317 | DOI | MR | Zbl

[17] W. H. Schikhof, Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge Stud. Adv. Math., 4, Cambridge Univ. Press, Cambridge, 1984, viii+306 pp. | DOI | MR | Zbl

[18] N. Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, Grad. Texts in Math., 58, Springer-Verlag, New York–Heidelberg, 1977, x+122 pp. | DOI | MR | MR | Zbl | Zbl

[19] V. S. Anashin, A. Yu. Khrennikov, E. I. Yurova, “Characterization of ergodicity of $p$-adic dynamical systems by using the van der Put basis”, Dokl. Math., 83:3 (2011), 306–308 | DOI | MR | Zbl

[20] K. H. Rosen, Elementary number theory and its applications, 6th ed., Pearson, USA, 2011, 752 pp.

[21] M. A. Kh. Ahmad, Lingmin Liao, M. Saburov, “Periodic $p$-adic Gibbs measures of $q$-state Potts model on Cayley trees. I. The chaos implies the vastness of the set of $p$-adic Gibbs measures”, J. Stat. Phys., 171:6 (2018), 1000–1034 | DOI | MR | Zbl

[22] F. Mukhamedov, “On the existence of generalized Gibbs measures for the one-dimensional $p$-adic countable state Potts model”, Izbrannye voprosy matematicheskoi fiziki i $p$-adicheskogo analiza, Sbornik statei, Tr. MIAN, 265, MAIK “Nauka/Interperiodika”, M., 2009, 177–188 | MR | Zbl

[23] F. M. Mukhamedov, U. A. Rozikov, “On Gibbs measures of $p$-adic Potts model on the Cayley tree”, Indag. Math. (N. S.), 15:1 (2004), 85–99 | DOI | MR | Zbl