Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_2_a5, author = {F. M. Mukhamedov and O. N. Khakimov}, title = {$p$-adic monomial equations and their perturbations}, journal = {Izvestiya. Mathematics }, pages = {348--360}, publisher = {mathdoc}, volume = {84}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a5/} }
F. M. Mukhamedov; O. N. Khakimov. $p$-adic monomial equations and their perturbations. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 348-360. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a5/
[1] A. Yu. Khrennikov, S. V. Kozyrev, W. A. Zúñiga-Galindo, Ultrametric pseudodifferential equations and applications, Encyclopedia Math. Appl., 168, Cambridge Univ. Press, Cambridge, 2018, xv+237 pp. | DOI | MR | Zbl
[2] S. Albeverio, R. Cianci, A. Yu. Khrennikov, “$p$-adic valued quantization”, $p$-Adic Numbers Ultrametric Anal. Appl., 1:2 (2009), 91–104 | DOI | MR | Zbl
[3] V. Anashin, A. Khrennikov, Applied algebraic dynamics, De Gruyter Exp. Math., 49, Walter de Gruyter Co., Berlin, 2009, xxiv+533 pp. | DOI | MR | Zbl
[4] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, “On $p$-adic mathematical physics”, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl
[5] B. Dragovich, A Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, E. I. Zelenov, “$p$-adic mathematical physics: the first 30 years”, $p$-Adic Numbers Ultrametric Anal. Appl., 9:2 (2017), 87–121 | DOI | MR | Zbl
[6] A. Yu. Khrennikov, Nearkhimedov analiz i ego prilozheniya, Fizmatlit, M., 2003, 216 pp. | MR | Zbl
[7] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adic analysis and mathematical physics, Ser. Soviet East European Math., 1, World Sci. Publ., River Edge, NJ, 1994, xx+319 pp. | DOI | MR | MR | Zbl | Zbl
[8] Z. I. Borevich, I. R. Shafarevich, Number theory, Pure Appl. Math., 20, Academic Press, New York–London, 1966, x+435 pp. | MR | MR | Zbl | Zbl
[9] F. M. Mukhamedov, B. A. Omirov, M. Kh. Saburov, K. K. Masutova, “Solvability of cubic equations in $p$-adic integers ($p>3$)”, Siberian Math. J., 54:3 (2013), 501–516 | DOI | MR | Zbl
[10] F. Mukhamedov, M. Saburov, “On equation $x^q=a$ over $\mathbb Q_p$”, J. Number Theory, 133:1 (2013), 55–58 | DOI | MR | Zbl
[11] J. M. Casas, B. A. Omirov, U. A. Rozikov, “Solvability criteria for the equation $x^q = a$ in the field of $p$-adic numbers”, Bull. Malays. Math. Sci. Soc. (2), 37:3 (2014), 853–863 | MR | Zbl
[12] F. Mukhamedov, “A dynamical system approach to phase transitions for $p$-adic Potts model on the Cayley tree of order two”, Rep. Math. Phys., 70:3 (2012), 385–406 | DOI | MR | Zbl
[13] F. Mukhamedov, O. Khakimov, “Chaotic behavior of the $p$-adic Potts–Bethe mapping”, Discrete Contin. Dyn. Syst., 38:1 (2018), 231–245 | DOI | MR | Zbl
[14] E. Yurova Axelsson, A. Khrennikov, “Generalization of Hensel's lemma: finding the roots of $p$-adic Lipschitz functions”, J. Number Theory, 158 (2016), 217–233 | DOI | MR | Zbl
[15] E. I. Yurova Axelsson, A. Yu. Khrennikov, “Subcoordinate representation of $p$-adic functions and generalization of Hensel's lemma”, Izv. Math., 82:3 (2018), 632–645 | DOI | DOI | MR | Zbl
[16] F. Mukhamedov, “Recurrence equations over trees in a non-Archimedean context”, $p$-Adic Numbers Ultrametric Anal. Appl., 6:4 (2014), 310–317 | DOI | MR | Zbl
[17] W. H. Schikhof, Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge Stud. Adv. Math., 4, Cambridge Univ. Press, Cambridge, 1984, viii+306 pp. | DOI | MR | Zbl
[18] N. Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, Grad. Texts in Math., 58, Springer-Verlag, New York–Heidelberg, 1977, x+122 pp. | DOI | MR | MR | Zbl | Zbl
[19] V. S. Anashin, A. Yu. Khrennikov, E. I. Yurova, “Characterization of ergodicity of $p$-adic dynamical systems by using the van der Put basis”, Dokl. Math., 83:3 (2011), 306–308 | DOI | MR | Zbl
[20] K. H. Rosen, Elementary number theory and its applications, 6th ed., Pearson, USA, 2011, 752 pp.
[21] M. A. Kh. Ahmad, Lingmin Liao, M. Saburov, “Periodic $p$-adic Gibbs measures of $q$-state Potts model on Cayley trees. I. The chaos implies the vastness of the set of $p$-adic Gibbs measures”, J. Stat. Phys., 171:6 (2018), 1000–1034 | DOI | MR | Zbl
[22] F. Mukhamedov, “On the existence of generalized Gibbs measures for the one-dimensional $p$-adic countable state Potts model”, Izbrannye voprosy matematicheskoi fiziki i $p$-adicheskogo analiza, Sbornik statei, Tr. MIAN, 265, MAIK “Nauka/Interperiodika”, M., 2009, 177–188 | MR | Zbl
[23] F. M. Mukhamedov, U. A. Rozikov, “On Gibbs measures of $p$-adic Potts model on the Cayley tree”, Indag. Math. (N. S.), 15:1 (2004), 85–99 | DOI | MR | Zbl