Vaught's conjecture for weakly $o$-minimal theories of~finite convexity rank
Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 324-347

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that weakly $o$-minimal theories of finite convexity rank having less than $2^{\omega}$ countable models are binary. Our main result is the confirmation of Vaught's conjecture for weakly $o$-minimal theories of finite convexity rank.
Keywords: weak $o$-minimality, Vaught's conjecture, countable model, convexity rank, binarity.
@article{IM2_2020_84_2_a4,
     author = {B. Sh. Kulpeshov},
     title = {Vaught's conjecture for weakly $o$-minimal theories of~finite convexity rank},
     journal = {Izvestiya. Mathematics },
     pages = {324--347},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a4/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
TI  - Vaught's conjecture for weakly $o$-minimal theories of~finite convexity rank
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 324
EP  - 347
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a4/
LA  - en
ID  - IM2_2020_84_2_a4
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%T Vaught's conjecture for weakly $o$-minimal theories of~finite convexity rank
%J Izvestiya. Mathematics 
%D 2020
%P 324-347
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a4/
%G en
%F IM2_2020_84_2_a4
B. Sh. Kulpeshov. Vaught's conjecture for weakly $o$-minimal theories of~finite convexity rank. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 324-347. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a4/