Vaught's conjecture for weakly $o$-minimal theories of~finite convexity rank
Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 324-347
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that weakly $o$-minimal theories of finite convexity rank having less
than $2^{\omega}$ countable models are binary. Our main result is the
confirmation of Vaught's conjecture for weakly $o$-minimal theories of finite
convexity rank.
Keywords:
weak $o$-minimality, Vaught's conjecture, countable model, convexity rank, binarity.
@article{IM2_2020_84_2_a4,
author = {B. Sh. Kulpeshov},
title = {Vaught's conjecture for weakly $o$-minimal theories of~finite convexity rank},
journal = {Izvestiya. Mathematics },
pages = {324--347},
publisher = {mathdoc},
volume = {84},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a4/}
}
B. Sh. Kulpeshov. Vaught's conjecture for weakly $o$-minimal theories of~finite convexity rank. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 324-347. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a4/