Conditions of~modularity of~the congruence~lattice of~an~act over a~rectangular band
Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 291-323

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe polygons over rectangular bands that have modular, distributive or linearly ordered congruence lattice. It turns out that such polygons have at most 11 elements, and their congruence lattice has at most 300 elements. Furthermore, certain facts are established about the structure of polygons with modular congruence lattice over an arbitrary semigroup and about the structure of the congruence lattice of a polygon over a rectangular band. The work is based on the description of polygons over a completely (0-)simple semigroup obtained by Avdeev and Kozhukhov in 2000 and on the characterization of disconnected polygons with modular or distributive congruence lattice by Ptakhov and Stepanova in 2013.
Keywords: polygon over a semigroup, rectangular band, congruence lattice, modular lattice.
@article{IM2_2020_84_2_a3,
     author = {I. B. Kozhukhov and A. M. Pryanichnikov and A. R. Simakova},
     title = {Conditions of~modularity of~the congruence~lattice of~an~act over a~rectangular band},
     journal = {Izvestiya. Mathematics },
     pages = {291--323},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a3/}
}
TY  - JOUR
AU  - I. B. Kozhukhov
AU  - A. M. Pryanichnikov
AU  - A. R. Simakova
TI  - Conditions of~modularity of~the congruence~lattice of~an~act over a~rectangular band
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 291
EP  - 323
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a3/
LA  - en
ID  - IM2_2020_84_2_a3
ER  - 
%0 Journal Article
%A I. B. Kozhukhov
%A A. M. Pryanichnikov
%A A. R. Simakova
%T Conditions of~modularity of~the congruence~lattice of~an~act over a~rectangular band
%J Izvestiya. Mathematics 
%D 2020
%P 291-323
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a3/
%G en
%F IM2_2020_84_2_a3
I. B. Kozhukhov; A. M. Pryanichnikov; A. R. Simakova. Conditions of~modularity of~the congruence~lattice of~an~act over a~rectangular band. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 291-323. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a3/