Conditions of~modularity of~the congruence~lattice of~an~act over a~rectangular band
Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 291-323.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe polygons over rectangular bands that have modular, distributive or linearly ordered congruence lattice. It turns out that such polygons have at most 11 elements, and their congruence lattice has at most 300 elements. Furthermore, certain facts are established about the structure of polygons with modular congruence lattice over an arbitrary semigroup and about the structure of the congruence lattice of a polygon over a rectangular band. The work is based on the description of polygons over a completely (0-)simple semigroup obtained by Avdeev and Kozhukhov in 2000 and on the characterization of disconnected polygons with modular or distributive congruence lattice by Ptakhov and Stepanova in 2013.
Keywords: polygon over a semigroup, rectangular band, congruence lattice, modular lattice.
@article{IM2_2020_84_2_a3,
     author = {I. B. Kozhukhov and A. M. Pryanichnikov and A. R. Simakova},
     title = {Conditions of~modularity of~the congruence~lattice of~an~act over a~rectangular band},
     journal = {Izvestiya. Mathematics },
     pages = {291--323},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a3/}
}
TY  - JOUR
AU  - I. B. Kozhukhov
AU  - A. M. Pryanichnikov
AU  - A. R. Simakova
TI  - Conditions of~modularity of~the congruence~lattice of~an~act over a~rectangular band
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 291
EP  - 323
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a3/
LA  - en
ID  - IM2_2020_84_2_a3
ER  - 
%0 Journal Article
%A I. B. Kozhukhov
%A A. M. Pryanichnikov
%A A. R. Simakova
%T Conditions of~modularity of~the congruence~lattice of~an~act over a~rectangular band
%J Izvestiya. Mathematics 
%D 2020
%P 291-323
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a3/
%G en
%F IM2_2020_84_2_a3
I. B. Kozhukhov; A. M. Pryanichnikov; A. R. Simakova. Conditions of~modularity of~the congruence~lattice of~an~act over a~rectangular band. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 291-323. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a3/

[1] I. B. Kozhukhov, A. V. Reshetnikov, “Algebras whose equivalence relations are congruences”, J. Math. Sci. (N.Y.), 177:6 (2011), 886–907 | DOI | MR | Zbl

[2] A. Tuganbaev, Distributive modules and related topics, Algebra Logic Appl., 12, Gordon and Breach Science Publishers, Amsterdam, 1999, xvi+258 pp. | MR | Zbl

[3] R. Brandl, “Groups whose lattices of normal subgroups are distributive”, Glasgow Math. J., 31:2 (1989), 183–188 | DOI | MR | Zbl

[4] H. Mitsch, “Semigroups and their lattice of congruences”, Semigroup Forum, 26:1-2 (1983), 1–63 | DOI | MR | Zbl

[5] D. O. Ptakhov, A. A. Stepanova, “Reshetki kongruentsii poligonov”, Dalnevost. matem. zhurn., 13:1 (2013), 107–115 | MR | Zbl

[6] A. R. Khaliullina, “Usloviya modulyarnosti reshetki kongruentsii poligona nad polugruppoi pravykh ili levykh nulei”, Dalnevost. matem. zhurn., 15:1 (2015), 102–120 | MR | Zbl

[7] A. I. Mal'cev, Algebraic systems, Grundlehren Math. Wiss., 192, Springer-Verlag, New York–Heidelberg, 1973, xii+317 pp. | DOI | MR | MR | Zbl | Zbl

[8] P. M. Cohn, Universal algebra, Harper Row, Publishers, New York–London, 1965, xv+333 pp. | MR | MR | Zbl | Zbl

[9] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, v. I, II, Math. Surveys Monogr., 7, Amer. Math. Soc., Providence, RI, 1961, 1967, xv+224 pp., xv+350 pp. | MR | MR | MR | MR | Zbl | Zbl

[10] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories, De Gruyter Exp. Math., 29, Walter de Gruyter Co., Berlin, 2000, xviii+529 pp. | DOI | MR | Zbl

[11] G. Grätzer, General lattice theory, Lehrbucher Monogr. Geb. Exakten Wissensch., Math. Reihe, 52, Birkhäuser Verlag, Basel–Stuttgart, 1978, xiii+381 pp. | MR | MR | Zbl | Zbl

[12] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., 25, 3rd ed., Amer. Math. Soc., Providence, RI, 1967, vi+418 pp. | MR | MR | Zbl | Zbl

[13] A. Yu. Avdeyev, I. B. Kozhukhov, “Acts over completely 0-simple semigroups”, Acta Cybernet., 14:4 (2000), 523–531 | MR | Zbl