Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_2_a2, author = {V. F. Butuzov}, title = {On singularly perturbed systems {of~ODE} with a~multiple root of~the degenerate equation}, journal = {Izvestiya. Mathematics }, pages = {262--290}, publisher = {mathdoc}, volume = {84}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a2/} }
V. F. Butuzov. On singularly perturbed systems of~ODE with a~multiple root of~the degenerate equation. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 262-290. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a2/
[1] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shk., M., 1990, 208 pp. | MR | Zbl
[2] V. F. Butuzov, “Asymptotics of the solution of a system of singularly perturbed equations in the case of a multiple root of the degenerate equation”, Differ. Equ., 50:2 (2014), 177–188 | DOI | DOI | MR | Zbl
[3] V. F. Butuzov, “On one singularly perturbed system of ordinary differential equations with multiple root of the degenerate equation”, J. Math. Sci. (N.Y.), 240:3 (2019), 224–248 | DOI | MR | Zbl
[4] V. F. Butuzov, “On the special properties of the boundary layer in singularly perturbed problems with multiple root of the degenerate equation”, Math. Notes, 94:1 (2013), 60–70 | DOI | DOI | MR | Zbl
[5] V. F. Butuzov, “On the stability and the attraction domain of the stationary solution of a singularly perturbed parabolic equation with a multiple root of the degenerate equation”, Differ. Equ., 51:12 (2015), 1569–1582 | DOI | DOI | MR | Zbl
[6] V. A. Beloshapko, V. F. Butuzov, “Asymptotics of the solution to a singularly perturbed elliptic problem with a three-zone boundary layer”, Comput. Math. Math. Phys., 56:8 (2016), 1414–1425 | DOI | DOI | MR | Zbl
[7] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl
[8] A. M. Il'in, Yu. A. Leonychev, O. Yu. Khachay, “The asymptotic behaviour of the solution to a system of differential equations with a small parameter and singular initial point”, Sb. Math., 201:1 (2010), 79–101 | DOI | DOI | MR | Zbl
[9] N. N. Nefedov, “The method of differential inequalities for some classes of nonlinear singularly perturbed problems with internal layers”, Differ. Equ., 31:7 (1995), 1077–1085 | MR | Zbl
[10] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992, xvi+777 pp. | DOI | MR | Zbl
[11] V. F. Butuzov, A. I. Bychkov, “Asymptotics of the solution to an initial boundary value problem for a singularly perturbed parabolic equation in the case of a triple root of the degenerate equation”, Comput. Math. Math. Phys., 56:4 (2016), 593–611 | DOI | DOI | MR | Zbl
[12] V. F. Butuzov, “Asymptotic behaviour and stability of solutions of a singularly perturbed elliptic problem with a triple root of the degenerate equation”, Izv. Math., 81:3 (2017), 481–504 | DOI | DOI | MR | Zbl
[13] V. M. Vasil'ev, A. I. Vol'pert, S. I. Khudyaev, “A method of quasi-stationary concentrations for the equations of chemical kinetics”, U.S.S.R. Comput. Math. Math. Phys., 13:3 (1973), 187–206 | DOI | MR