On singularly perturbed systems of~ODE with a~multiple root of~the degenerate equation
Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 262-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a boundary-value problem for a system of two second-order ODE with distinct powers of a small parameter at the second derivative in the first and second equations. When one of the two equations of the degenerate system has a double root, the asymptotic behaviour of the boundary-layer solution of the boundary-value problem turns out to be qualitatively different from the known asymptotic behaviour in the case when those equations have simple roots. In particular, the scales of the boundary-layer variables and the very algorithm for constructing the boundary-layer series depend on the type of the boundary conditions for the unknown functions. We construct and justify asymptotic expansions of the boundary-layer solution for boundary conditions of a particular type. These expansions differ from those for other boundary conditions.
Keywords: singularly perturbed boundary-value problems, boundary layer, asymptotics in a small parameter, the case of a multiple root of the degenerate equation.
@article{IM2_2020_84_2_a2,
     author = {V. F. Butuzov},
     title = {On singularly perturbed systems {of~ODE} with a~multiple root of~the degenerate equation},
     journal = {Izvestiya. Mathematics },
     pages = {262--290},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a2/}
}
TY  - JOUR
AU  - V. F. Butuzov
TI  - On singularly perturbed systems of~ODE with a~multiple root of~the degenerate equation
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 262
EP  - 290
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a2/
LA  - en
ID  - IM2_2020_84_2_a2
ER  - 
%0 Journal Article
%A V. F. Butuzov
%T On singularly perturbed systems of~ODE with a~multiple root of~the degenerate equation
%J Izvestiya. Mathematics 
%D 2020
%P 262-290
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a2/
%G en
%F IM2_2020_84_2_a2
V. F. Butuzov. On singularly perturbed systems of~ODE with a~multiple root of~the degenerate equation. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 262-290. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a2/

[1] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shk., M., 1990, 208 pp. | MR | Zbl

[2] V. F. Butuzov, “Asymptotics of the solution of a system of singularly perturbed equations in the case of a multiple root of the degenerate equation”, Differ. Equ., 50:2 (2014), 177–188 | DOI | DOI | MR | Zbl

[3] V. F. Butuzov, “On one singularly perturbed system of ordinary differential equations with multiple root of the degenerate equation”, J. Math. Sci. (N.Y.), 240:3 (2019), 224–248 | DOI | MR | Zbl

[4] V. F. Butuzov, “On the special properties of the boundary layer in singularly perturbed problems with multiple root of the degenerate equation”, Math. Notes, 94:1 (2013), 60–70 | DOI | DOI | MR | Zbl

[5] V. F. Butuzov, “On the stability and the attraction domain of the stationary solution of a singularly perturbed parabolic equation with a multiple root of the degenerate equation”, Differ. Equ., 51:12 (2015), 1569–1582 | DOI | DOI | MR | Zbl

[6] V. A. Beloshapko, V. F. Butuzov, “Asymptotics of the solution to a singularly perturbed elliptic problem with a three-zone boundary layer”, Comput. Math. Math. Phys., 56:8 (2016), 1414–1425 | DOI | DOI | MR | Zbl

[7] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl

[8] A. M. Il'in, Yu. A. Leonychev, O. Yu. Khachay, “The asymptotic behaviour of the solution to a system of differential equations with a small parameter and singular initial point”, Sb. Math., 201:1 (2010), 79–101 | DOI | DOI | MR | Zbl

[9] N. N. Nefedov, “The method of differential inequalities for some classes of nonlinear singularly perturbed problems with internal layers”, Differ. Equ., 31:7 (1995), 1077–1085 | MR | Zbl

[10] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992, xvi+777 pp. | DOI | MR | Zbl

[11] V. F. Butuzov, A. I. Bychkov, “Asymptotics of the solution to an initial boundary value problem for a singularly perturbed parabolic equation in the case of a triple root of the degenerate equation”, Comput. Math. Math. Phys., 56:4 (2016), 593–611 | DOI | DOI | MR | Zbl

[12] V. F. Butuzov, “Asymptotic behaviour and stability of solutions of a singularly perturbed elliptic problem with a triple root of the degenerate equation”, Izv. Math., 81:3 (2017), 481–504 | DOI | DOI | MR | Zbl

[13] V. M. Vasil'ev, A. I. Vol'pert, S. I. Khudyaev, “A method of quasi-stationary concentrations for the equations of chemical kinetics”, U.S.S.R. Comput. Math. Math. Phys., 13:3 (1973), 187–206 | DOI | MR