Greedy approximation by arbitrary set
Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 246-261

Voir la notice de l'article provenant de la source Math-Net.Ru

We define various algorithms for greedy approximations by elements of an arbitrary set $M$ in a Banach space. We study the convergence of these algorithms in a Hilbert space under various geometric conditions on $M$. As a consequence, we obtain sufficient conditions for the additive semigroup generated by $M$ to be dense.
Keywords: greedy approximation, Hilbert space, density of a semigroup.
@article{IM2_2020_84_2_a1,
     author = {P. A. Borodin},
     title = {Greedy approximation by arbitrary set},
     journal = {Izvestiya. Mathematics },
     pages = {246--261},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a1/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Greedy approximation by arbitrary set
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 246
EP  - 261
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a1/
LA  - en
ID  - IM2_2020_84_2_a1
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Greedy approximation by arbitrary set
%J Izvestiya. Mathematics 
%D 2020
%P 246-261
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a1/
%G en
%F IM2_2020_84_2_a1
P. A. Borodin. Greedy approximation by arbitrary set. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 246-261. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a1/