Greedy approximation by arbitrary set
Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 246-261
Voir la notice de l'article provenant de la source Math-Net.Ru
We define various algorithms for greedy approximations by elements of an arbitrary set $M$ in a Banach space. We study the convergence of these algorithms in a Hilbert space under various geometric conditions on $M$. As a consequence, we obtain sufficient conditions for the additive semigroup generated by $M$ to be dense.
Keywords:
greedy approximation, Hilbert space, density of a semigroup.
@article{IM2_2020_84_2_a1,
author = {P. A. Borodin},
title = {Greedy approximation by arbitrary set},
journal = {Izvestiya. Mathematics },
pages = {246--261},
publisher = {mathdoc},
volume = {84},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a1/}
}
P. A. Borodin. Greedy approximation by arbitrary set. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 246-261. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a1/