Greedy approximation by arbitrary set
Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 246-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define various algorithms for greedy approximations by elements of an arbitrary set $M$ in a Banach space. We study the convergence of these algorithms in a Hilbert space under various geometric conditions on $M$. As a consequence, we obtain sufficient conditions for the additive semigroup generated by $M$ to be dense.
Keywords: greedy approximation, Hilbert space, density of a semigroup.
@article{IM2_2020_84_2_a1,
     author = {P. A. Borodin},
     title = {Greedy approximation by arbitrary set},
     journal = {Izvestiya. Mathematics },
     pages = {246--261},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a1/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Greedy approximation by arbitrary set
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 246
EP  - 261
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a1/
LA  - en
ID  - IM2_2020_84_2_a1
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Greedy approximation by arbitrary set
%J Izvestiya. Mathematics 
%D 2020
%P 246-261
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a1/
%G en
%F IM2_2020_84_2_a1
P. A. Borodin. Greedy approximation by arbitrary set. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 246-261. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a1/

[1] V. Temlyakov, Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011, xiv+418 pp. | DOI | MR | Zbl

[2] L. K. Jones, “On a conjecture of Huber concerning the convergence of projection pursuit regression”, Ann. Statist., 15:2 (1987), 880–882 | DOI | MR | Zbl

[3] P. A. Borodin, “Density of a semigroup in a Banach space”, Izv. Math., 78:6 (2014), 1079–1104 | DOI | DOI | MR | Zbl

[4] J. Korevaar, “Asymptotically neutral distributions of electrons and polynomial approximation”, Ann. of Math. (2), 80:3 (1964), 403–410 | DOI | MR | Zbl

[5] V. I. Danchenko, D. Ya. Danchenko, “Approximation by simplest fractions”, Math. Notes, 70:4 (2001), 502–507 | DOI | DOI | MR | Zbl

[6] O. N. Kosukhin, “Approximation properties of the most simple fractions”, Moscow Univ. Math. Bull., 56:4 (2001), 36–40 | MR | Zbl

[7] P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles. II”, Sb. Math., 207:3 (2016), 331–341 | DOI | DOI | MR | Zbl

[8] M. A. Komarov, “A criterion for the best uniform approximation by simple partial fractions in terms of alternance. II”, Izv. Math., 81:3 (2017), 568–591 | DOI | DOI | MR | Zbl

[9] E. D. Livshits, “On the recursive greedy algorithm”, Izv. Math., 70:1 (2006), 87–108 | DOI | DOI | MR | Zbl

[10] E. D. Livshits, “On $n$-term approximation with positive coefficients”, Math. Notes, 82:3 (2007), 332–340 | DOI | DOI | MR | Zbl

[11] J. Diestel, Geometry of Banach spaces – selected topics, Lecture Notes in Math., 485, Springer-Verlag, Berlin–New York, 1975, xi+282 pp. | DOI | MR | MR | Zbl | Zbl

[12] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Grundlehren Math. Wiss., 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York–Berlin, 1970, 415 pp. | DOI | MR | Zbl