Rigid divisors on surfaces
Izvestiya. Mathematics , Tome 84 (2020) no. 1, pp. 146-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study effective divisors $D$ on surfaces with $H^0(\mathcal{O}_D)=\Bbbk$ and $H^1(\mathcal{O}_D)=H^0(\mathcal{O}_D(D))=0$. We give a numerical criterion for such divisors, following a general investigation of negativity, rigidity and connectivity properties. Examples include exceptional loci of rational singularities, and spherelike divisors.
Keywords: negative divisors, rigid divisors, divisors on surfaces, spherelike sheaves.
@article{IM2_2020_84_1_a5,
     author = {A. Hochenegger and D. Ploog},
     title = {Rigid divisors on surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {146--185},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a5/}
}
TY  - JOUR
AU  - A. Hochenegger
AU  - D. Ploog
TI  - Rigid divisors on surfaces
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 146
EP  - 185
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a5/
LA  - en
ID  - IM2_2020_84_1_a5
ER  - 
%0 Journal Article
%A A. Hochenegger
%A D. Ploog
%T Rigid divisors on surfaces
%J Izvestiya. Mathematics 
%D 2020
%P 146-185
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a5/
%G en
%F IM2_2020_84_1_a5
A. Hochenegger; D. Ploog. Rigid divisors on surfaces. Izvestiya. Mathematics , Tome 84 (2020) no. 1, pp. 146-185. http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a5/

[1] R. Lazarsfeld, Positivity in algebraic geometry, v. I, Ergeb. Math. Grenzgeb. (3), 48, Classical setting: line bundles and linear series, Springer-Verlag, Berlin, 2004, xviii+387 pp. | DOI | MR | Zbl

[2] Th. Bauer, B. Harbourne, A. L. Knutsen, A. Küronya, S. Müller-Stach, X. Roulleau, T. Szemberg, “Negative curves on algebraic surfaces”, Duke Math. J., 162:10 (2013), 1877–1894 ; arXiv: 1109.1881 | DOI | MR | Zbl

[3] A. Hochenegger, M. Kalck, D. Ploog, “Spherical subcategories in algebraic geometry”, Math. Nachr., 289:11-12 (2016), 1450–1465 ; arXiv: 1208.4046 | DOI | MR | Zbl

[4] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, 2nd ed., Springer-Verlag, Berlin, 1998, xiv+470 pp. | DOI | MR | MR | Zbl

[5] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | MR | MR | Zbl | Zbl

[6] M. Reid, “Chapters on algebraic surfaces”, Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997, 3–159 ; arXiv: alg-geom/9602006 | DOI | MR | Zbl

[7] D. Huybrechts, Fourier–Mukai transforms in algebraic geometry, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, Oxford, 2006, viii+307 pp. | DOI | MR | Zbl

[8] W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp. | DOI | MR | Zbl

[9] L. Hille, D. Ploog, “Tilting chains of negative curves on rational surfaces”, Nagoya Math. J., 235 (2019), 26–41 ; arXiv: 1703.09350 | DOI | MR

[10] D. Vossieck, “The algebras with discrete derived category”, J. Algebra, 243:1 (2001), 168–176 | DOI | MR | Zbl

[11] G. Bobiński, C. Geiß, A. Skowroński, “Classification of discrete derived categories”, Cent. Eur. J. Math., 2:1 (2004), 19–49 | DOI | MR | Zbl

[12] L. Hille, D. Ploog, “Exceptional sequences and spherical modules for the Auslander algebra of $k[x]/(x^t)$”, Pacific J. Math., 302:2 (2019), 599–625 ; arXiv: 1709.03618 | DOI | MR

[13] A. Hochenegger, M. Kalck, D. Ploog, “Spherical subcategories in representation theory”, Math. Z., 291:1-2 (2019), 113–147 ; arXiv: 1502.06838 | DOI | MR | Zbl

[14] M. Artin, “Some numerical criteria for contractability of curves on algebraic surfaces”, Amer. J. Math., 84:3 (1962), 485–496 | DOI | MR | Zbl

[15] M. Artin, “On isolated rational singularities of surfaces”, Amer. J. Math., 88 (1966), 129–136 | DOI | MR | Zbl

[16] L. Bădescu, Algebraic surfaces, Transl. from the Romanian, Universitext, Springer-Verlag, New York, 2001, xii+258 pp. | DOI | MR | Zbl

[17] H. Grauert, “Über Modifikationen und exzeptionelle analytische Mengen”, Math. Ann., 146:4 (1962), 331–368 | DOI | MR | MR | Zbl | Zbl

[18] R. S. Varga, Matrix iterative analysis, Springer Ser. Comput. Math., 27, 2nd rev. and exp. ed., Springer-Verlag, Berlin, 2000, x+358 pp. | DOI | MR | Zbl

[19] E. R. García Barroso, P. D. González Pérez, P. Popescu-Pampu, “Ultrametric spaces of branches on arborescent singularities”, Singularities, algebraic geometry, commutative algebra and related topics, Springer, Cham, 2018, 55–106 ; arXiv: 1605.02229 | DOI | MR | Zbl

[20] A. H. Durfee, “Fifteen characterizations of rational double points and simple critical points”, Enseign. Math. (2), 25:1-2 (1979), 131–163 | MR | Zbl

[21] H. B. Laufer, “On rational singularities”, Amer. J. Math., 94:2 (1972), 597–608 | DOI | MR | Zbl

[22] A. Némethi, “Five lectures on normal surface singularities”, Low dimensional topology (Eger, 1996/Budapest, 1998), Bolyai Soc. Math. Stud., 8, János Bolyai Math. Soc., Budapest, 1999, 269–351 ; https://www.renyi.hu/~nemethi/JEGYZET.ps | MR | Zbl