Real Kummer quartics and their Heisenberg invariance
Izvestiya. Mathematics , Tome 84 (2020) no. 1, pp. 95-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two classifications of real Kummer quartics. They use the Heisenberg invariance of Kummer quartics. The first divides the whole variety of real Kummer quartics into four classes according to the Heisenberg-invariance type and then subdivides each class into subclasses to obtain a deformation classification. This subdivision into subclasses is performed by means of the topological classification of the real parts of real Kummer quartics. The second classification deals with the set of real Kummer quartics with a fixed Heisenberg group. Such a set consists of a continuous part and a discrete part. We describe the deformation classes of the continuous part and describe its discrete part.
Keywords: Heisenberg invariance, real Kummer quartic, translation group, Heisenberg group, deformation class.
@article{IM2_2020_84_1_a4,
     author = {V. A. Krasnov},
     title = {Real {Kummer} quartics and their {Heisenberg} invariance},
     journal = {Izvestiya. Mathematics },
     pages = {95--145},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Real Kummer quartics and their Heisenberg invariance
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 95
EP  - 145
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a4/
LA  - en
ID  - IM2_2020_84_1_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Real Kummer quartics and their Heisenberg invariance
%J Izvestiya. Mathematics 
%D 2020
%P 95-145
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a4/
%G en
%F IM2_2020_84_1_a4
V. A. Krasnov. Real Kummer quartics and their Heisenberg invariance. Izvestiya. Mathematics , Tome 84 (2020) no. 1, pp. 95-145. http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a4/

[1] K. Rohn, “Die verschiedenen Gestalten der Kummer'schen Fläche”, Math. Ann., 18:1 (1881), 99–159 | DOI | MR | Zbl

[2] R. W. H. T. Hudson, Kummer's quartic surface, Cambridge Univ. Press, Cambridge, 1905, xi+219 pp. | MR | Zbl

[3] V. A. Krasnov, “On real quadric line complexes”, Izv. Math., 74:6 (2010), 1255–1276 | DOI | DOI | MR | Zbl

[4] V. A. Krasnov, “Rigid isotopy classification of real quadric line complexes and associated Kummer surfaces”, Math. Notes, 89:5 (2011), 661–671 | DOI | DOI | MR | Zbl

[5] V. A. Krasnov, “Real Kummer surfaces”, Izv. Math., 83:1 (2019), 65–103 | DOI | DOI | MR | Zbl

[6] D. Mumford, “On the equations defining abelian varieties. I”, Invent. Math., 1:4 (1966), 287–354 | DOI | MR | Zbl

[7] C. Birkenhake, H. Lange, Complex abelian varieties, Grundlehren Math. Wiss., 302, 2nd ed., Springer-Verlag, Berlin, 2004, xii+635 pp. | DOI | MR | Zbl

[8] W. Barth, I. Nieto, “Abelian surfaces of type (1,3) and quartic surfaces with 16 skew lines”, J. Algebraic Geom., 3:2 (1994), 173–222 | MR | Zbl

[9] M. R. Gonzalez-Dorrego, (16,6) configurations and geometry Kummer surfaces in $\mathbf{P}^3$, Mem. Amer. Math. Soc., 107, no. 512, Amer. Math. Soc., Providence, RI, 1994, vi+101 pp. | DOI | MR | Zbl

[10] I. Nieto, “The singular $H_{2,2}$-invariant quartic surfaces in $\mathbb{P}_3$”, Geom. Dedicata, 57:2 (1995), 157–170 | DOI | MR | Zbl

[11] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl

[12] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl

[13] I. Nieto, “The normalizer of the level (2,2)-Heisenberg group”, Manuscripta Math., 76 (1992), 257–267 | DOI | MR | Zbl

[14] W. Fulton, J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991, xvi+551 pp. | DOI | MR | Zbl

[15] C. M. Jessop, A treatise on the line complex, Cambridge Univ. Press, Cambridge, 1903, xv+362 pp. | MR | Zbl

[16] J. W. S. Cassels, E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2, London Math. Soc. Lecture Note Ser., 230, Cambridge Univ. Press, Cambridge, 1996, xiv+219 pp. | DOI | MR | Zbl

[17] B. Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Math., 1637, Springer-Verlag, Berlin, 1996, xiv+332 pp. | DOI | MR | Zbl

[18] H. F. Baker, Principles of geometry, v. 4, Cambridge Univ. Press, Cambridge, 1940, 274 pp.

[19] C. W. Borchardt, “Ueber die Darstellung der Kummerschen Fläche vierter Ordnung mit sechzehn Knotenpunkten durch die Göpelsche biquadratische Relation zwischen vier Thetafunctionen mit zwei Variabeln”, J. Reine Angew. Math., 1877:83 (1877), 234–244 | DOI | MR | Zbl