Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_1_a4, author = {V. A. Krasnov}, title = {Real {Kummer} quartics and their {Heisenberg} invariance}, journal = {Izvestiya. Mathematics }, pages = {95--145}, publisher = {mathdoc}, volume = {84}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a4/} }
V. A. Krasnov. Real Kummer quartics and their Heisenberg invariance. Izvestiya. Mathematics , Tome 84 (2020) no. 1, pp. 95-145. http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a4/
[1] K. Rohn, “Die verschiedenen Gestalten der Kummer'schen Fläche”, Math. Ann., 18:1 (1881), 99–159 | DOI | MR | Zbl
[2] R. W. H. T. Hudson, Kummer's quartic surface, Cambridge Univ. Press, Cambridge, 1905, xi+219 pp. | MR | Zbl
[3] V. A. Krasnov, “On real quadric line complexes”, Izv. Math., 74:6 (2010), 1255–1276 | DOI | DOI | MR | Zbl
[4] V. A. Krasnov, “Rigid isotopy classification of real quadric line complexes and associated Kummer surfaces”, Math. Notes, 89:5 (2011), 661–671 | DOI | DOI | MR | Zbl
[5] V. A. Krasnov, “Real Kummer surfaces”, Izv. Math., 83:1 (2019), 65–103 | DOI | DOI | MR | Zbl
[6] D. Mumford, “On the equations defining abelian varieties. I”, Invent. Math., 1:4 (1966), 287–354 | DOI | MR | Zbl
[7] C. Birkenhake, H. Lange, Complex abelian varieties, Grundlehren Math. Wiss., 302, 2nd ed., Springer-Verlag, Berlin, 2004, xii+635 pp. | DOI | MR | Zbl
[8] W. Barth, I. Nieto, “Abelian surfaces of type (1,3) and quartic surfaces with 16 skew lines”, J. Algebraic Geom., 3:2 (1994), 173–222 | MR | Zbl
[9] M. R. Gonzalez-Dorrego, (16,6) configurations and geometry Kummer surfaces in $\mathbf{P}^3$, Mem. Amer. Math. Soc., 107, no. 512, Amer. Math. Soc., Providence, RI, 1994, vi+101 pp. | DOI | MR | Zbl
[10] I. Nieto, “The singular $H_{2,2}$-invariant quartic surfaces in $\mathbb{P}_3$”, Geom. Dedicata, 57:2 (1995), 157–170 | DOI | MR | Zbl
[11] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl
[12] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl
[13] I. Nieto, “The normalizer of the level (2,2)-Heisenberg group”, Manuscripta Math., 76 (1992), 257–267 | DOI | MR | Zbl
[14] W. Fulton, J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991, xvi+551 pp. | DOI | MR | Zbl
[15] C. M. Jessop, A treatise on the line complex, Cambridge Univ. Press, Cambridge, 1903, xv+362 pp. | MR | Zbl
[16] J. W. S. Cassels, E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2, London Math. Soc. Lecture Note Ser., 230, Cambridge Univ. Press, Cambridge, 1996, xiv+219 pp. | DOI | MR | Zbl
[17] B. Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Math., 1637, Springer-Verlag, Berlin, 1996, xiv+332 pp. | DOI | MR | Zbl
[18] H. F. Baker, Principles of geometry, v. 4, Cambridge Univ. Press, Cambridge, 1940, 274 pp.
[19] C. W. Borchardt, “Ueber die Darstellung der Kummerschen Fläche vierter Ordnung mit sechzehn Knotenpunkten durch die Göpelsche biquadratische Relation zwischen vier Thetafunctionen mit zwei Variabeln”, J. Reine Angew. Math., 1877:83 (1877), 234–244 | DOI | MR | Zbl