Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_1_a3, author = {M. B. Karmanova}, title = {Two-step {sub-Lorentzian} structures and graph surfaces}, journal = {Izvestiya. Mathematics }, pages = {52--94}, publisher = {mathdoc}, volume = {84}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a3/} }
M. B. Karmanova. Two-step sub-Lorentzian structures and graph surfaces. Izvestiya. Mathematics , Tome 84 (2020) no. 1, pp. 52-94. http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a3/
[1] V. M. Miklyukov, A. A. Klyachin, V. A. Klyachin, Maksimalnye poverkhnosti v prostranstve-vremeni Minkovskogo http://www.uchimsya.info/maxsurf.pdf
[2] G. L. Naber, The geometry of Minkowski spacetime. An introduction to the mathematics of the special theory of relativity, Appl. Math. Sci., 92, Springer-Verlag, New York, 1992, xvi+257 pp. | MR | Zbl
[3] B. Nielsen, “Minimal immersions, Einstein's equations and Mach's principle”, J. Geom. Phys., 4:1 (1987), 1–20 | DOI | MR | Zbl
[4] V. N. Berestovskii, V. M. Gichev, “Metrized left-invariant orders on topological groups”, St. Petersburg Math. J., 11:4 (2000), 543–565 | MR | Zbl
[5] M. Grochowski, “Reachable sets for the Heisenberg sub-Lorentzian structure on $\mathbb R^3$. An estimate for the distance function”, J. Dyn. Control Syst., 12:2 (2006), 145–160 | DOI | MR | Zbl
[6] M. Grochowski, “Properties of reachable sets in the sub-Lorentzian geometry”, J. Geom. Phys., 59:7 (2009), 885–900 | DOI | MR | Zbl
[7] M. Grochowski, “Normal forms and reachable sets for analytic Martinet sub-Lorentzian structures of Hamiltonian type”, J. Dyn. Control Syst., 17:1 (2011), 49–75 | DOI | MR | Zbl
[8] M. Grochowski, “Reachable sets for contact sub-Lorentzian metrics on $\mathbb R^3$. Application to control affine systems on $\mathbb R^3$ with a scalar input”, J. Math. Sci. (N.Y.), 177:3 (2011), 383–394 | DOI | MR | Zbl
[9] M. Grochowski, “The structure of reachable sets for affine control systems induced by generalized Martinet sub-Lorentzian metrics”, ESAIM Control Optim. Calc. Var., 18:4 (2012), 1150–1177 | DOI | MR | Zbl
[10] M. Grochowski, “The structure of reachable sets and geometric optimality of singular trajectories for certain affine control systems in $\mathbb R^3$. The sub-Lorentzian approach”, J. Dyn. Control Syst., 20:1 (2014), 59–89 | DOI | MR | Zbl
[11] M. Grochowski, “Geodesics in the sub-Lorentzian geometry”, Bull. Polish Acad. Sci. Math., 50:2 (2002), 161–178 | MR | Zbl
[12] M. Grochowski, “Remarks on global sub-Lorentzian geometry”, Anal. Math. Phys., 3:4 (2013), 295–309 | DOI | MR | Zbl
[13] A. Korolko, I. Markina, “Nonholonomic Lorentzian geometry on some $\mathbb H$-type groups”, J. Geom. Anal., 19:4 (2009), 864–889 | DOI | MR | Zbl
[14] A. Korolko, I. Markina, “Geodesics on $\mathbb H$-type quaternion groups with sub-Lorentzian metric and their physical interpretation”, Complex Anal. Oper. Theory, 4:3 (2010), 589–618 | DOI | MR | Zbl
[15] V. R. Krym, N. N. Petrov, “Equations of motion of a charged particle in a five-dimensional model of the general theory of relativity with a nonholonomic four-dimensional velocity space”, Vestnik St. Petersburg Univ. Math., 40:1 (2007), 52–60 | DOI | MR | Zbl
[16] V. R. Krym, N. N. Petrov, “The curvature tensor and the Einstein equations for a four-dimensional nonholonomic distribution”, Vestnik St. Petersburg Univ. Math., 41:3 (2008), 256–265 | DOI | MR | Zbl
[17] W. Craig, S. Weinstein, “On determinism and well-posedness in multiple time dimensions”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465:2110 (2009), 3023–3046 | DOI | MR | Zbl
[18] I. Bars, J. Terning, Extra dimensions in space and time, Multiversal Journeys, Springer, New York, 2010, xiv+217 pp. | DOI | Zbl
[19] M. V. Velev, “Relativistic mechanics in multiple time dimensions”, Phys. Essays, 25:3 (2012), 403–438 | DOI
[20] M. B. Karmanova, “The area formula for graphs on $4$-dimensional $2$-step sub-Lorentzian structures”, Siberian Math. J., 56:5 (2015), 852–871 | DOI | DOI | MR | Zbl
[21] M. B. Karmanova, “The area of graph surfaces on four-dimensional two-step sub-Lorentzian structures”, Dokl. Math., 92:1 (2015), 456–459 | DOI | DOI | MR | Zbl
[22] M. B. Karmanova, “Maximal graph surfaces on four-dimensional two-step sub-Lorentzian structures”, Siberian Math. J., 57:2 (2016), 274–284 | DOI | DOI | MR | Zbl
[23] M. B. Karmanova, “Graph surfaces on five-dimensional sub-Lorentzian structures”, Siberian Math. J., 58:1 (2017), 91–108 | DOI | DOI | MR | Zbl
[24] M. B. Karmanova, “Area formula for graph surfaces on five-dimensional sub-Lorentzian structures”, Dokl. Math., 93:2 (2016), 216–219 | DOI | DOI | MR | Zbl
[25] M. B. Karmanova, “Maximal surfaces on five-dimensional group structures”, Siberian Math. J., 59:3 (2018), 442–457 | DOI | DOI | MR | Zbl
[26] M. B. Karmanova, “Variations of nonholonomic-valued mappings and their applications to maximal surface theory”, Dokl. Math., 93:3 (2016), 276–279 | DOI | DOI | MR | Zbl
[27] M. B. Karmanova, “Surface area on two-step sub-Lorentzian structures with multi-dimensional time”, Dokl. Math., 95:3 (2017), 218–221 | DOI | DOI | MR | Zbl
[28] M. B. Karmanova, “Graphs of Lipschitz mappings on two-step sub-Lorentzian structures with multidimensional time”, Dokl. Math., 98:1 (2018), 360–363 | DOI | DOI | Zbl
[29] G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Math. Notes, 28, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1982, 284 pp. | MR | Zbl
[30] P. Pansu, “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math. (2), 129:1 (1989), 1–60 | DOI | MR | Zbl
[31] M. B. Karmanova, “The graphs of Lipschitz functions and minimal surfaces on Carnot groups”, Siberian Math. J., 53:4 (2012), 672–690 | DOI | MR | Zbl
[32] S. K. Vodopyanov, “Geometry of Carnot–Carathéodory spaces and differentiability of mappings”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 247–301 | DOI | MR | Zbl
[33] M. B. Karmanova, “The polynomial sub-Riemannian differentiability of some Hölder mappings of Carnot groups”, Siberian Math. J., 58:2 (2017), 232–254 | DOI | DOI | MR | Zbl
[34] M. B. Karmanova, “Area formulas for classes of Hölder continuous mappings of Carnot groups”, Siberian Math. J., 58:5 (2017), 817–836 | DOI | DOI | MR | Zbl
[35] A. Ostrowski, “Sur la détermination des bornes inférieures pour une classe des déterminants”, Bull. Sci. Math., 61 (1937), 19–32 | Zbl
[36] M. B. Karmanova, “An area formula for Lipschitz mappings of Carnot–Carathéodory spaces”, Izv. Math., 78:3 (2014), 475–499 | DOI | DOI | MR | Zbl
[37] S. K. Vodopyanov, Integrirovanie po Lebegu http://math.nsc.ru/~matanalyse/Lebesgue.pdf
[38] M. de Guzmán, Differentiation of integrals in $\mathbf R^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin–New York, 1975, xii+266 pp. | DOI | MR | Zbl
[39] S. K. Vodop'yanov, A. D. Ukhlov, “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I”, Siberian Adv. Math., 14:4 (2004), 78–125 | MR | MR | Zbl
[40] S. K. Vodop'yanov, A. D. Ukhlov, “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. II”, Siberian Adv. Math., 15:1 (2005), 91–125 | MR | MR | Zbl