On mixed dynamics of~two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles
Izvestiya. Mathematics , Tome 84 (2020) no. 1, pp. 23-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider one-parameter families (general unfoldings) of two-dimensional reversible diffeomorphisms that contain a diffeomorphism with a symmetric non-transversal heteroclinic cycle. We show that in such families there exist Newhouse intervals of parameters such that the values corresponding to the co-existence of infinitely many stable, completely unstable, saddle and symmetric elliptic periodic orbits are generic (that is, they form Baire second-category sets). Also, the closures of the sets of orbits of different types have non-empty intersections.
Keywords: heteroclinic cycle, reversible diffeomorphism, homoclinic tangency, periodic orbit, mixed dynamics.
Mots-clés : bifurcation
@article{IM2_2020_84_1_a2,
     author = {S. V. Gonchenko and M. S. Gonchenko and I. O. Sinitsky},
     title = {On mixed dynamics of~two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles},
     journal = {Izvestiya. Mathematics },
     pages = {23--51},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a2/}
}
TY  - JOUR
AU  - S. V. Gonchenko
AU  - M. S. Gonchenko
AU  - I. O. Sinitsky
TI  - On mixed dynamics of~two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 23
EP  - 51
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a2/
LA  - en
ID  - IM2_2020_84_1_a2
ER  - 
%0 Journal Article
%A S. V. Gonchenko
%A M. S. Gonchenko
%A I. O. Sinitsky
%T On mixed dynamics of~two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles
%J Izvestiya. Mathematics 
%D 2020
%P 23-51
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a2/
%G en
%F IM2_2020_84_1_a2
S. V. Gonchenko; M. S. Gonchenko; I. O. Sinitsky. On mixed dynamics of~two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles. Izvestiya. Mathematics , Tome 84 (2020) no. 1, pp. 23-51. http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a2/

[1] S. V. Gonchenko, D. V. Turaev, L. P. Shilnikov, “On Newhouse domains of two-dimensional diffeomorphisms which are close to a diffeomorphism with a structurally unstable heteroclinic cycle”, Proc. Steklov Inst. Math., 216 (1997), 70–118 | MR | Zbl

[2] S. V. Gonchenko, L. P. Shilnikov, O. V. Sten'kin, “On Newhouse regions with infinitely many stable and unstable invariant tori”, Progress in nonlinear science (Nizhny Novgorod, 2001), v. 1, RAS, Inst. Appl. Phys., Nizhniy Novgorod, 2002, 80–102 | MR

[3] S. V. Gonchenko, O. V. Stenkin, L. P. Shilnikov, “O suschestvovanii schetnogo mnozhestva ustoichivykh i neustoichivykh invariantnykh torov u sistem iz oblastei Nyukhausa s geteroklinicheskimi kasaniyami”, Nelineinaya dinam., 2:1 (2006), 3–25

[4] D. Turaev, “Maps close to identity and universal maps in the Newhouse domain”, Comm. Math. Phys., 335:3 (2015), 1235–1277 | DOI | MR | Zbl

[5] S. V. Gonchenko, “Reversible mixed dynamics: a concept and examples”, Discontin. Nonlinearity Complex., 5:4 (2016), 365–374 | DOI | Zbl

[6] S. V. Gonchenko, D. V. Turaev, “On three types of dynamics and the notion of attractor”, Proc. Steklov Inst. Math., 297 (2017), 116–137 | DOI | DOI | MR | Zbl

[7] S. E. Newhouse, “The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms”, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 101–151 | DOI | MR | Zbl

[8] S. V. Gonchenko, D. V. Turaev, L. P. Shil'nikov, “On the existence of Newhouse domains in a neighborhood of systems with a structurally unstable Poincaré homoclinic curve (the higher-dimensional case)”, Russian Acad. Sci. Dokl. Math., 47:2 (1993), 268–273 | MR | Zbl

[9] S. E. Newhouse, “Diffeomorphisms with infinitely many sinks”, Topology, 13 (1974), 9–18 | DOI | MR | Zbl

[10] S. V. Gonchenko, D. V. Turaev, L. P. Shil'nikov, “Dynamical phenomena in multidimensional systems with a structurally unstable homoclinic Poincaré curve”, Russian Acad. Sci. Dokl. Math., 47:3 (1993), 410–415 | MR | Zbl

[11] S. V. Gonchenko, L. P. Shil'nikov, D. V. Turaev, “Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits”, Chaos, 6:1 (1996), 15–31 | DOI | MR | Zbl

[12] S. V. Gonchenko, L. P. Shilnikov, D. Turaev, “On dynamical properties of multidimensional diffeomorphisms from Newhouse regions. I”, Nonlinearity, 21:5 (2008), 923–972 | DOI | MR | Zbl

[13] V. S. Afraĭmovich, L. P. Shilnikov, “Strange attractors and quasiattractors”, Nonlinear dynamics and turbulence, Interaction Mech. Math. Ser., Pitman, Boston, MA, 1983, 1–34 | MR | Zbl

[14] S. V. Gonchenko, L. P. Shilnikov, “On two-dimensional area-preserving mappings with homoclinic tangencies”, Dokl. Math., 63:3 (2001), 395–399 | MR | Zbl

[15] M. S. Gonchenko, S. V. Gonchenko, “On cascades of elliptic periodic points in two-dimensional symplectic maps with homoclinic tangencies”, Regul. Chaotic Dyn., 14:1 (2009), 116–136 | DOI | MR | Zbl

[16] A. Delshams, M. Gonchenko, S. Gonchenko, “On dynamics and bifurcations of area-preserving maps with homoclinic tangencies”, Nonlinearity, 28:9 (2015), 3027–3071 | DOI | MR | Zbl

[17] A. O. Kazakov, “Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane”, Regul. Chaotic Dyn., 18:5 (2013), 508–520 | DOI | MR | Zbl

[18] L. M. Lerman, D. Turaev, “Breakdown of symmetry in reversible systems”, Regul. Chaotic Dyn., 17:3-4 (2012), 318–336 | DOI | MR | Zbl

[19] A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, D. V. Turaev, “On the phenomenon of mixed dynamics in Pikovsky–Topaj system of coupled rotators”, Phys. D, 350 (2017), 45–57 | DOI | MR | Zbl

[20] M. B. Sevryuk, Reversible Systems, Lecture Notes in Math., 1211, Springer-Verlag, Berlin, 1986, vi+319 pp. | DOI | MR | Zbl

[21] S. V. Gonchenko, J. S. W. Lamb, I. Rios, D. Turaev, “Attractors and repellers near generic elliptic points of reversible maps”, Dokl. Math., 89:1 (2014), 65–67 | DOI | DOI | MR | Zbl

[22] D. V. Anosov, I. U. Bronshteĭn, S. Kh. Aranson, V. Z. Grines, “Smooth dynamical systems”, Part 3, Dynamical systems I, Encyclopaedia Math. Sci., 1, 1988 | MR | Zbl

[23] J. S. W. Lamb, O. V. Stenkin, “Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits”, Nonlinearity, 17:4 (2004), 1217–1244 | DOI | MR | Zbl

[24] A. Delshams, S. V. Gonchenko, V. S. Gonchenko, J. T. Lázaro, O. V. Sten'kin, “Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps”, Nonlinearity, 26:1 (2013), 1–33 | DOI | MR | Zbl

[25] A. Delshams, M. Gonchenko, S. V. Gonchenko, J. T. Lázaro, “Mixed dynamics of $2$-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies”, Discrete Contin. Dyn. Syst., 38:9 (2018), 4483–4507 | DOI | MR | Zbl

[26] S. V. Gonchenko, L. P. Shil'nikov, “Invariants of $\Omega$-conjugacy of diffeomorphisms with a nongeneric homoclinic trajectory”, Ukrainian Math. J., 42:2 (1990), 134–140 | DOI | MR | Zbl

[27] S. V. Gonchenko, L. P. Shilnikov, “On moduli of systems with a structurally unstable homoclinic Poincaré curve”, Russian Acad. Sci. Izv. Math., 41:3 (1993), 417–445 | DOI | MR | Zbl

[28] C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math., 38, Amer. Math. Soc., Providence, RI, 1978, iii+89 pp. | MR | Zbl

[29] D. Ruelle, “Small random perturbations of dynamical systems and the definition of attractors”, Comm. Math. Phys., 82:1 (1981), 137–151 | DOI | MR | Zbl

[30] M. Hurley, “Attractors: persistence, and density of their basins”, Trans. Amer. Math. Soc., 269:1 (1982), 247–271 | DOI | MR | Zbl

[31] D. V. Turaev, L. P. Shil'nikov, “An example of a wild strange attractor”, Sb. Math., 189:2 (1998), 291–314 | DOI | DOI | MR | Zbl

[32] S. S. Gonchenko, A. O. Kazakov, D. Turaev, Wild pseudohyperbolic attractors in a four-dimensional Lorenz system, arXiv: 1809.07250

[33] A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, A. D. Kozlov, “Elements of contemporary theory of dynamical chaos: a tutorial. Part I. Pseudohyperbolic attractors”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28:11 (2018), 1830036, 29 pp. | DOI | MR | Zbl

[34] S. V. Gonchenko, L. P. Shil'nikov, D. V. Turaev, “Quasiattractors and homoclinic tangencies”, Comput. Math. Appl., 34:2-4 (1997), 195–227 | DOI | MR | Zbl