Smooth solutions of the eikonal equation and the~behaviour of local minima of the distance function
Izvestiya. Mathematics , Tome 83 (2019) no. 6, pp. 1234-1258.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study smooth solutions of the eikonal equation. To do this, we investigate the problem of geometric-topological properties of the singularities of the distance function and the regular set. We establish a connection between the caustic and domains where the number of local minima of the distance function is constant. We pose a number of problems about reflecting surfaces bringing light to a single point (a focus) and introduce the notions of generalized ellipsoids and paraboloids.
Keywords: singular sets, regular sets, solarity points, caustic.
Mots-clés : eikonal equation
@article{IM2_2019_83_6_a4,
     author = {I. G. Tsar'kov},
     title = {Smooth solutions of the eikonal equation and the~behaviour of local minima of the distance function},
     journal = {Izvestiya. Mathematics },
     pages = {1234--1258},
     publisher = {mathdoc},
     volume = {83},
     number = {6},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a4/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Smooth solutions of the eikonal equation and the~behaviour of local minima of the distance function
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 1234
EP  - 1258
VL  - 83
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a4/
LA  - en
ID  - IM2_2019_83_6_a4
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Smooth solutions of the eikonal equation and the~behaviour of local minima of the distance function
%J Izvestiya. Mathematics 
%D 2019
%P 1234-1258
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a4/
%G en
%F IM2_2019_83_6_a4
I. G. Tsar'kov. Smooth solutions of the eikonal equation and the~behaviour of local minima of the distance function. Izvestiya. Mathematics , Tome 83 (2019) no. 6, pp. 1234-1258. http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a4/

[1] Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, eds. M. Born, E. Wolf, Pergamon Press, London–New York–Paris–Los Angeles, 1959, xxvi+803 pp. | MR | Zbl

[2] J. W. Bruce, P. J. Giblin, Curves and singularities. A geometrical introduction to singularity theory, Cambridge Univ. Press, Cambridge, 1984, xii+222 pp. | MR | MR | Zbl | Zbl

[3] R. P. Feynman, R. B. Leighton, M. Sands, “Ch. 26–38”, The Feynman lectures on physics, v. I, Mainly mechanics, radiation, and heat, Reading, Mass.–London, 1963 | Zbl

[4] Yu. A. Kravtsov, Yu. I. Orlov, Geometrical optics of inhomogeneous media, Springer Ser. Wave Phenomena, 6, Springer-Verlag, Berlin, 1990, xiv+312 pp. | MR | MR

[5] V. I. Arnol'd, Singularities of caustics and wave fronts, Math. Appl. (Soviet Ser.), 62, Kluwer Acad. Publ., Dordrecht, 1990, xiv+259 pp. | DOI | MR | MR | Zbl | Zbl

[6] S. N. Kružkov, “Generalized solutions of the Hamilton–Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions”, Math. USSR-Sb., 27:3 (1975), 406–446 | DOI | MR | Zbl

[7] A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | DOI | MR | Zbl

[8] V. S. Balaganskii, L. P. Vlasov, “The problem of convexity of Chebyshev sets”, Russian Math. Surveys, 51:6 (1996), 1127–1190 | DOI | DOI | MR | Zbl

[9] A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci. (N. Y.), 217:6 (2016), 683–730 | DOI | MR | Zbl

[10] V. S. Balaganskii, “Necessary conditions for differentiability of distance functions”, Math. Notes, 72:6 (2002), 752–756 | DOI | DOI | MR | Zbl

[11] I. G. Tsar'kov, “Properties of $C^1$-solution to the eikonal equation”, Lobachevskii J. Math., 38:4 (2017), 763–766 | DOI | MR | Zbl

[12] I. G. Tsar'kov, “Singular sets of surfaces”, Russ. J. Math. Phys., 24:2 (2017), 263–271 | DOI | MR | Zbl

[13] I. G. Tsarkov, “Nekotorye prilozheniya geometricheskoi teorii priblizheniya”, Differentsialnye uravneniya. Matematicheskii analiz, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 143, VINITI RAN, M., 2017, 63–80 | MR

[14] W. Hurewicz, H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, NJ, 1948, vii+165 pp. | MR | Zbl

[15] S. Eilenberg, D. Montgomery, “Fixed point theorems for multi-valued transformations”, Amer. J. Math., 68:2 (1946), 214–222 | DOI | MR | Zbl