Instantaneous blow-up versus local solubility of~the Cauchy problem for a~two-dimensional equation
Izvestiya. Mathematics , Tome 83 (2019) no. 6, pp. 1174-1200.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for a model third-order partial differential equation with non-linearity of the form $|\nabla u|^q$. We prove that for $q\in(1,2]$ the Cauchy problem in $\mathbb{R}^2$ has no local-in-time weak solution for a large class of initial functions, while for $q>2$ a local weak solution exists.
Keywords: finite-time blow-up, non-linear waves, instantaneous blow-up.
@article{IM2_2019_83_6_a2,
     author = {M. O. Korpusov and A. A. Panin},
     title = {Instantaneous blow-up versus local solubility of~the {Cauchy} problem for a~two-dimensional equation},
     journal = {Izvestiya. Mathematics },
     pages = {1174--1200},
     publisher = {mathdoc},
     volume = {83},
     number = {6},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a2/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. A. Panin
TI  - Instantaneous blow-up versus local solubility of~the Cauchy problem for a~two-dimensional equation
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 1174
EP  - 1200
VL  - 83
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a2/
LA  - en
ID  - IM2_2019_83_6_a2
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. A. Panin
%T Instantaneous blow-up versus local solubility of~the Cauchy problem for a~two-dimensional equation
%J Izvestiya. Mathematics 
%D 2019
%P 1174-1200
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a2/
%G en
%F IM2_2019_83_6_a2
M. O. Korpusov; A. A. Panin. Instantaneous blow-up versus local solubility of~the Cauchy problem for a~two-dimensional equation. Izvestiya. Mathematics , Tome 83 (2019) no. 6, pp. 1174-1200. http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a2/

[1] H. Brezis, X. Cabré, “Some simple nonlinear PDE's without solutions”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1-B:2 (1998), 223–262 | MR | Zbl

[2] X. Cabré, Y. Martel, “Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier [Existence versus instantaneous blow-up for linear heat equations with singular potentials]”, C. R. Acad. Sci. Paris Sér. I Math., 329:11 (1999), 973–978 | DOI | MR | Zbl

[3] F. B. Weissler, “Local existence and nonexistence for semilinear parabolic equations in $L^p$”, Indiana Univ. Math. J., 29:1 (1980), 79–102 | DOI | MR | Zbl

[4] È. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl

[5] V. A. Galaktionov, J.-L. Vázquez, “The problem of blow-up in nonlinear parabolic equations”, Current developments in partial differential equations (Temuco, 1999), Discrete Contin. Dyn. Syst., 8:2 (2002), 399–433 | DOI | MR | Zbl

[6] J. A. Goldstein, I. Kombe, “Instantaneous blow up”, Advances in differential equations and mathematical physics (Birmingham, AL, 2002), Contemp. Math., 327, Amer. Math. Soc., Providence, RI, 2003, 141–150 | DOI | MR | Zbl

[7] Y. Giga, N. Umeda, “On instant blow-up for semilinear heat equations with growing initial data”, Methods Appl. Anal., 15:2 (2008), 185–195 | DOI | MR | Zbl

[8] E. I. Galakhov, “On the absence of local solutions of several evolutionary problems”, Math. Notes, 86:3 (2009), 314–324 | DOI | DOI | MR | Zbl

[9] E. I. Galakhov, “On the instantaneous blow-up of solutions of some quasilinear evolution problems”, Differ. Equ., 46:3 (2010), 329–338 | DOI | MR | Zbl

[10] B. D. Coleman, R. J. Duffin, V. J. Mizel, “Instability, uniqueness, and nonexistence theorems for the equation $u_t=u_{xx}-u_{xtx}$ on a strip”, Arch. Rational Mech. Anal., 19:2 (1965), 100–116 | DOI | MR | Zbl

[11] G. A. Sviridyuk, “On the general theory of operator semigroups”, Russian Math. Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl

[12] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, De Gruyter Ser. Nonlinear Anal. Appl., 15, Walter de Gruyter Co., Berlin, 2011, xii+648 pp. | DOI | MR | Zbl

[13] M. O. Korpusov, “Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type”, Izv. Math., 79:5 (2015), 955–1012 | DOI | DOI | MR | Zbl

[14] M. O. Korpusov, A. V. Ovchinnikov, A. A. Panin, “Instantaneous blow-up versus local solvability of solutions to the Cauchy problem for the equation of a semiconductor in a magnetic field”, Math. Methods Appl. Sci., 41:17 (2018), 8070–8099 | DOI | MR | Zbl

[15] V. L. Bonch-Bruevich, S. G. Kalashnikov, Fizika poluprovodnikov, Nauka, M., 1977, 672 pp.

[16] V. A. Ditkin, A. P. Prudnikov, Spravochnik po operatsionnomu ischisleniyu, Vysshaya shkola, M., 1965, 465 pp. | Zbl

[17] I. S. Gradshteyn, I. M. Ryzhik, Tables of integrals, series, and products, 5th ed., Academic Press, Inc., Boston, MA, 1994, xlviii+1204 pp. | MR | MR | Zbl

[18] V. S. Vladimirov, Equations of mathematical physics, Pure Appl. Math., 3, Marcel Dekker, Inc., New York, 1971, vi+418 pp. | MR | MR | Zbl | Zbl

[19] A. A. Panin, “On local solvability and blow-up of solutions of an abstract nonlinear Volterra integral equation”, Math. Notes, 97:6 (2015), 892–908 | DOI | DOI | MR | Zbl

[20] J. Wermer, Potential theory, Lecture Notes in Math., 408, Springer-Verlag, Berlin–New York, 1974, viii+146 pp. | MR | MR | Zbl | Zbl